220 lines
5.8 KiB
C++
220 lines
5.8 KiB
C++
|
|
/***************************************************************************
|
|
*
|
|
Copyright 2013 CertiVox UK Ltd. *
|
|
*
|
|
This file is part of CertiVox MIRACL Crypto SDK. *
|
|
*
|
|
The CertiVox MIRACL Crypto SDK provides developers with an *
|
|
extensive and efficient set of cryptographic functions. *
|
|
For further information about its features and functionalities please *
|
|
refer to http://www.certivox.com *
|
|
*
|
|
* The CertiVox MIRACL Crypto SDK is free software: you can *
|
|
redistribute it and/or modify it under the terms of the *
|
|
GNU Affero General Public License as published by the *
|
|
Free Software Foundation, either version 3 of the License, *
|
|
or (at your option) any later version. *
|
|
*
|
|
* The CertiVox MIRACL Crypto SDK is distributed in the hope *
|
|
that it will be useful, but WITHOUT ANY WARRANTY; without even the *
|
|
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *
|
|
See the GNU Affero General Public License for more details. *
|
|
*
|
|
* You should have received a copy of the GNU Affero General Public *
|
|
License along with CertiVox MIRACL Crypto SDK. *
|
|
If not, see <http://www.gnu.org/licenses/>. *
|
|
*
|
|
You can be released from the requirements of the license by purchasing *
|
|
a commercial license. Buying such a license is mandatory as soon as you *
|
|
develop commercial activities involving the CertiVox MIRACL Crypto SDK *
|
|
without disclosing the source code of your own applications, or shipping *
|
|
the CertiVox MIRACL Crypto SDK with a closed source product. *
|
|
*
|
|
***************************************************************************/
|
|
/*
|
|
* MIRACL C++ Implementation file ecn2.cpp
|
|
*
|
|
* AUTHOR : M. Scott
|
|
*
|
|
* PURPOSE : Implementation of class ECn2 (Elliptic curves over n^2)
|
|
*
|
|
* WARNING: This class has been cobbled together for a specific use with
|
|
* the MIRACL library. It is not complete, and may not work in other
|
|
* applications
|
|
*/
|
|
|
|
#include "ecn2.h"
|
|
|
|
using namespace std;
|
|
|
|
#ifndef MR_AFFINE_ONLY
|
|
void ECn2::get(ZZn2& x,ZZn2& y,ZZn2& z) const
|
|
{ecn2_get(&fn,&(x.fn),&(y.fn),&(z.fn));}
|
|
#endif
|
|
|
|
void ECn2::get(ZZn2& x,ZZn2& y) const
|
|
{norm(); ecn2_getxy(&fn,&(x.fn),&(y.fn)); }
|
|
|
|
void ECn2::get(ZZn2& x) const
|
|
{norm(); ecn2_getx(&fn,&(x.fn));}
|
|
|
|
#ifndef MR_AFFINE_ONLY
|
|
void ECn2::getZ(ZZn2& z) const
|
|
{ecn2_getz(&fn,&(z.fn));}
|
|
#endif
|
|
|
|
void ECn2::norm(void) const
|
|
{ // normalize a point
|
|
ecn2_norm(&(fn));
|
|
}
|
|
|
|
BOOL ECn2::iszero(void) const
|
|
{if (fn.marker==MR_EPOINT_INFINITY) return TRUE; return FALSE;}
|
|
|
|
BOOL ECn2::set(const ZZn2& xx,const ZZn2& yy)
|
|
{
|
|
return ecn2_set((zzn2 *)&(xx.fn),(zzn2 *)&(yy.fn),&(fn));
|
|
}
|
|
|
|
BOOL ECn2::set(const ZZn2& xx)
|
|
{
|
|
return ecn2_setx((zzn2 *)&(xx.fn),&(fn));
|
|
}
|
|
|
|
#ifndef MR_AFFINE_ONLY
|
|
void ECn2::set(const ZZn2& xx,const ZZn2& yy,const ZZn2& zz)
|
|
{
|
|
ecn2_setxyz((zzn2 *)&(xx.fn),(zzn2 *)&(yy.fn),(zzn2 *)&(zz.fn),&(fn));
|
|
}
|
|
#endif
|
|
|
|
ECn2 operator-(const ECn2& a)
|
|
{
|
|
ECn2 w=a;
|
|
ecn2_negate(&(w.fn),&(w.fn));
|
|
return w;
|
|
}
|
|
|
|
ECn2& ECn2::operator*=(const Big& k)
|
|
{
|
|
ecn2_mul(k.getbig(),&(this->fn));
|
|
return *this;
|
|
}
|
|
|
|
ECn2 operator*(const Big& r,const ECn2& P)
|
|
{
|
|
ECn2 T=P;
|
|
T*=r;
|
|
return T;
|
|
}
|
|
|
|
#ifndef MR_NO_STANDARD_IO
|
|
|
|
ostream& operator<<(ostream& s,const ECn2& b)
|
|
{
|
|
ZZn2 x,y,z;
|
|
if (b.iszero())
|
|
s << "(Infinity)";
|
|
else
|
|
{
|
|
b.get(x,y);
|
|
|
|
s << "(" << x << "," << y << ")";
|
|
}
|
|
return s;
|
|
}
|
|
|
|
#endif
|
|
|
|
ECn2 operator+(const ECn2& a,const ECn2& b)
|
|
{ECn2 c=a; c+=b; return c;}
|
|
|
|
ECn2 operator-(const ECn2& a,const ECn2& b)
|
|
{ECn2 c=a; c-=b; return c;}
|
|
|
|
ECn2& ECn2::operator-=(const ECn2& z)
|
|
{ECn2 t=(-z); *this+=t; return *this; }
|
|
|
|
ECn2& ECn2::operator+=(const ECn2& w)
|
|
{
|
|
ecn2_add(&(w.fn),&(this->fn));
|
|
return *this;
|
|
}
|
|
|
|
#ifndef MR_EDWARDS
|
|
|
|
BOOL ECn2::add(const ECn2& w,const ZZn2& lam,const ZZn2 &extra1)
|
|
{
|
|
return ecn2_add2(&(w.fn),&(this->fn),(zzn2 *)&(lam.fn),(zzn2 *)&(extra1.fn));
|
|
}
|
|
|
|
BOOL ECn2::add(const ECn2& w,const ZZn2& lam)
|
|
{
|
|
return ecn2_add1(&(w.fn),&(this->fn),(zzn2 *)&(lam.fn));
|
|
}
|
|
|
|
BOOL ECn2::add(const ECn2& w,const ZZn2& lam,const ZZn2& extra1,const ZZn2& extra2)
|
|
{
|
|
return ecn2_add3(&(w.fn),&(this->fn),(zzn2 *)&(lam.fn),(zzn2 *)&(extra1.fn),(zzn2 *)&(extra2.fn));
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifndef MR_NO_ECC_MULTIADD
|
|
|
|
ECn2 mul(const Big& a,const ECn2& P,const Big& b,const ECn2& Q)
|
|
{
|
|
ECn2 R;
|
|
ecn2_mul2_jsf(a.getbig(),&(P.fn),b.getbig(),&(Q.fn),&(R.fn));
|
|
R.norm();
|
|
return R;
|
|
}
|
|
|
|
// standard MIRACL multi-addition
|
|
|
|
|
|
ECn2 mul4(ECn2* P,const Big* b)
|
|
{
|
|
int i,n=4;
|
|
ECn2 R;
|
|
big x[4];
|
|
ecn2 p[4];
|
|
|
|
for (i=0;i<n;i++)
|
|
{
|
|
x[i]=b[i].getbig();
|
|
p[i]=P[i].fn;
|
|
}
|
|
|
|
ecn2_mult4(x,p,&(R.fn));
|
|
|
|
R.norm();
|
|
return R;
|
|
}
|
|
|
|
#ifndef MR_STATIC
|
|
|
|
ECn2 mul(int n,ECn2* P,const Big* b)
|
|
{
|
|
int i;
|
|
ECn2 R;
|
|
big *x=(big *)mr_alloc(n,sizeof(big));
|
|
ecn2 *p=(ecn2 *)mr_alloc(n,sizeof(ecn2));
|
|
for (i=0;i<n;i++)
|
|
{
|
|
x[i]=b[i].getbig();
|
|
p[i]=P[i].fn;
|
|
}
|
|
|
|
ecn2_multn(n,x,p,&(R.fn));
|
|
|
|
mr_free(p); mr_free(x);
|
|
R.norm();
|
|
return R;
|
|
}
|
|
#endif
|
|
|
|
#endif
|
|
|