552 lines
10 KiB
C++
552 lines
10 KiB
C++
|
|
/***************************************************************************
|
|
*
|
|
Copyright 2013 CertiVox UK Ltd. *
|
|
*
|
|
This file is part of CertiVox MIRACL Crypto SDK. *
|
|
*
|
|
The CertiVox MIRACL Crypto SDK provides developers with an *
|
|
extensive and efficient set of cryptographic functions. *
|
|
For further information about its features and functionalities please *
|
|
refer to http://www.certivox.com *
|
|
*
|
|
* The CertiVox MIRACL Crypto SDK is free software: you can *
|
|
redistribute it and/or modify it under the terms of the *
|
|
GNU Affero General Public License as published by the *
|
|
Free Software Foundation, either version 3 of the License, *
|
|
or (at your option) any later version. *
|
|
*
|
|
* The CertiVox MIRACL Crypto SDK is distributed in the hope *
|
|
that it will be useful, but WITHOUT ANY WARRANTY; without even the *
|
|
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *
|
|
See the GNU Affero General Public License for more details. *
|
|
*
|
|
* You should have received a copy of the GNU Affero General Public *
|
|
License along with CertiVox MIRACL Crypto SDK. *
|
|
If not, see <http://www.gnu.org/licenses/>. *
|
|
*
|
|
You can be released from the requirements of the license by purchasing *
|
|
a commercial license. Buying such a license is mandatory as soon as you *
|
|
develop commercial activities involving the CertiVox MIRACL Crypto SDK *
|
|
without disclosing the source code of your own applications, or shipping *
|
|
the CertiVox MIRACL Crypto SDK with a closed source product. *
|
|
*
|
|
***************************************************************************/
|
|
/*
|
|
* MIRACL C++ Implementation file ecn3.cpp
|
|
*
|
|
* AUTHOR : M. Scott
|
|
*
|
|
* PURPOSE : Implementation of class ECn3 (Elliptic curves over n^3)
|
|
*
|
|
* WARNING: This class has been cobbled together for a specific use with
|
|
* the MIRACL library. It is not complete, and may not work in other
|
|
* applications
|
|
*
|
|
*/
|
|
|
|
#include "ecn3.h"
|
|
|
|
using namespace std;
|
|
|
|
void ECn3::get(ZZn3& a,ZZn3& b) const
|
|
{
|
|
#ifdef MR_ECN3_PROJECTIVE
|
|
norm();
|
|
#endif
|
|
a=x; b=y;
|
|
}
|
|
|
|
BOOL ECn3::iszero(void) const
|
|
{if (marker==MR_EPOINT_INFINITY) return TRUE; return FALSE;}
|
|
|
|
void ECn3::get(ZZn3& a) const
|
|
{
|
|
#ifdef MR_ECN3_PROJECTIVE
|
|
norm();
|
|
#endif
|
|
a=x;
|
|
}
|
|
|
|
#ifdef MR_ECN3_PROJECTIVE
|
|
#ifndef MR_AFFINE_ONLY
|
|
void ECn3::getZ(ZZn3& a) const
|
|
{a=z;}
|
|
void ECn3::get(ZZn3& a,ZZn3& b,ZZn3& c) const
|
|
{
|
|
a=x;b=y;
|
|
if (marker==MR_EPOINT_GENERAL) c=z;
|
|
else c=(ZZn)1;
|
|
}
|
|
|
|
void ECn3::set(const ZZn3& xx,const ZZn3& yy,const ZZn3& zz)
|
|
{
|
|
x=xx;
|
|
y=yy;
|
|
z=zz;
|
|
if (z==(ZZn)1) marker=MR_EPOINT_NORMALIZED;
|
|
else marker=MR_EPOINT_GENERAL;
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
BOOL ECn3::set(const ZZn3& xx,const ZZn3& yy)
|
|
{
|
|
int qnr;
|
|
ZZn3 w;
|
|
|
|
w=rhs(xx);
|
|
if (yy*yy!=w) return FALSE;
|
|
x=xx;
|
|
y=yy;
|
|
marker=MR_EPOINT_NORMALIZED;
|
|
return TRUE;
|
|
}
|
|
|
|
BOOL ECn3::set(const ZZn3& xx)
|
|
{
|
|
ZZn3 w;
|
|
|
|
w=rhs(xx);
|
|
|
|
if (!w.iszero())
|
|
{
|
|
w=sqrt(w);
|
|
if (w.iszero()) return FALSE;
|
|
}
|
|
|
|
x=xx;
|
|
y=w;
|
|
|
|
marker=MR_EPOINT_NORMALIZED;
|
|
return TRUE;
|
|
}
|
|
|
|
void ECn3::norm(void) const
|
|
{ // normalize a point
|
|
#ifdef MR_ECN3_PROJECTIVE
|
|
#ifndef MR_AFFINE_ONLY
|
|
if (marker!=MR_EPOINT_GENERAL) return;
|
|
ZZn3 t;
|
|
z=inverse(z);
|
|
t=z;
|
|
z*=z;
|
|
x*=z;
|
|
z*=t;
|
|
y*=z;
|
|
z=1;
|
|
marker=MR_EPOINT_NORMALIZED;
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
|
|
ECn3 operator-(const ECn3& a)
|
|
{ECn3 w;
|
|
if (a.marker!=MR_EPOINT_INFINITY)
|
|
{
|
|
w.x=a.x;
|
|
w.y=-a.y;
|
|
w.marker=a.marker;
|
|
#ifdef MR_ECN3_PROJECTIVE
|
|
#ifndef MR_AFFINE_ONLY
|
|
if (w.marker==MR_EPOINT_GENERAL) w.z=a.z;
|
|
#endif
|
|
#endif
|
|
}
|
|
return w;
|
|
}
|
|
|
|
ECn3& ECn3::operator*=(const Big& k)
|
|
{
|
|
int i,j,n,nb,nbs,nzs;
|
|
ECn3 p2,pt,t[11];
|
|
Big h,kk;
|
|
|
|
if (k==0)
|
|
{
|
|
clear();
|
|
return *this;
|
|
}
|
|
if (k==1)
|
|
{
|
|
return (*this);
|
|
}
|
|
#ifdef MR_ECN3_PROJECTIVE
|
|
norm();
|
|
#endif
|
|
pt=*this;
|
|
kk=k;
|
|
if (kk<0)
|
|
{
|
|
pt=-pt;
|
|
kk=-kk;
|
|
}
|
|
h=3*kk;
|
|
|
|
// This is not optimal!
|
|
|
|
p2=pt+pt;
|
|
#ifdef MR_ECN3_PROJECTIVE
|
|
p2.norm();
|
|
#endif
|
|
t[0]=pt;
|
|
for (i=1;i<=10;i++)
|
|
{
|
|
t[i]=t[i-1]+p2;
|
|
#ifdef MR_ECN3_PROJECTIVE
|
|
t[i].norm();
|
|
#endif
|
|
}
|
|
|
|
// Left to Right method
|
|
|
|
nb=bits(h);
|
|
for (i=nb-2;i>=1;)
|
|
{
|
|
n=naf_window(kk,h,i,&nbs,&nzs,11);
|
|
for (j=0;j<nbs;j++) pt+=pt;
|
|
if (n>0) pt+=t[n/2];
|
|
if (n<0) pt-=t[(-n)/2];
|
|
i-=nbs;
|
|
if (nzs)
|
|
{
|
|
for (j=0;j<nzs;j++) pt+=pt;
|
|
i-=nzs;
|
|
}
|
|
}
|
|
*this=pt;
|
|
return *this;
|
|
}
|
|
|
|
ECn3 operator*(const Big& r,const ECn3& P)
|
|
{
|
|
ECn3 T=P;
|
|
T*=r;
|
|
return T;
|
|
}
|
|
|
|
#ifndef MR_NO_STANDARD_IO
|
|
ostream& operator<<(ostream& s,const ECn3& b)
|
|
{
|
|
ZZn3 x,y;
|
|
if (b.iszero())
|
|
s << "(Infinity)";
|
|
else
|
|
{
|
|
b.get(x,y);
|
|
s << "(" << x << "," << y << ")";
|
|
}
|
|
return s;
|
|
}
|
|
#endif
|
|
|
|
ECn3 operator+(const ECn3& a,const ECn3& b)
|
|
{ECn3 c=a; c+=b; return c;}
|
|
|
|
ECn3 operator-(const ECn3& a,const ECn3& b)
|
|
{ECn3 c=a; c-=b; return c;}
|
|
|
|
ECn3& ECn3::operator-=(const ECn3& z)
|
|
{ECn3 t=(-z); *this+=t; return *this; }
|
|
|
|
ECn3& ECn3::operator+=(const ECn3& z)
|
|
{
|
|
ZZn3 lam;
|
|
add(z,lam,NULL,NULL);
|
|
return *this;
|
|
}
|
|
|
|
int ECn3::add(const ECn3& W,ZZn3& lam,ZZn3 *ex1,ZZn3 *ex2)
|
|
{
|
|
miracl *mip=get_mip();
|
|
int twist=mip->TWIST;
|
|
int qnr=mip->cnr;
|
|
|
|
if (marker==MR_EPOINT_INFINITY)
|
|
{
|
|
*this=W;
|
|
return MR_ADD;
|
|
}
|
|
if (W.marker==MR_EPOINT_INFINITY)
|
|
{
|
|
return MR_ADD;
|
|
}
|
|
#ifdef MR_ECN3_PROJECTIVE
|
|
#ifndef MR_AFFINE_ONLY
|
|
if (mr_mip->coord==MR_AFFINE)
|
|
{
|
|
#endif
|
|
#endif
|
|
if (x!=W.x)
|
|
{
|
|
ZZn3 t=y; t-=W.y;
|
|
ZZn3 t2=x; t2-=W.x;
|
|
lam=t; lam/=t2;
|
|
|
|
x+=W.x; t=lam; t*=t; t-=x; x=t;
|
|
y=W.x; y-=x; y*=lam; y-=W.y;
|
|
marker=MR_EPOINT_NORMALIZED;
|
|
return MR_ADD;
|
|
}
|
|
else
|
|
{
|
|
if (y!=W.y || y.iszero())
|
|
{
|
|
clear();
|
|
lam=one(); // any non-zero value
|
|
return 0;
|
|
}
|
|
ZZn3 t=x;
|
|
ZZn3 t1,t2=x;
|
|
|
|
// lam=(3*(x*x)+getA())/(y+y);
|
|
lam=x;
|
|
lam*=lam;
|
|
lam*=3;
|
|
|
|
t1=getA();
|
|
if (twist==MR_QUADRATIC) t1=qnr*qnr*t1;
|
|
if (twist==MR_QUARTIC_M) t1=tx(t1);
|
|
if (twist==MR_QUARTIC_D) t1=txd(t1);
|
|
lam+=t1;
|
|
|
|
lam/=(y+y);
|
|
t2+=x;
|
|
x=lam;
|
|
x*=x;
|
|
x-=t2;
|
|
|
|
t-=x;
|
|
t*=lam;
|
|
t-=y;
|
|
y=t;
|
|
marker=MR_EPOINT_NORMALIZED;
|
|
return MR_DOUBLE;
|
|
}
|
|
#ifdef MR_ECN3_PROJECTIVE
|
|
#ifndef MR_AFFINE_ONLY
|
|
}
|
|
int iA;
|
|
BOOL Doubling;
|
|
ZZn3 t1,t2,t3;
|
|
ZZn3 Yzzz;
|
|
|
|
t3=W.x;
|
|
Yzzz=W.y;
|
|
|
|
Doubling=FALSE;
|
|
if (this==&W) Doubling=TRUE;
|
|
|
|
if (!Doubling)
|
|
{
|
|
if (W.marker!=MR_EPOINT_NORMALIZED)
|
|
{
|
|
mr_berror(_MIPP_ MR_ERR_BAD_PARAMETERS);
|
|
MR_OUT
|
|
return 0;
|
|
}
|
|
if (marker!=MR_EPOINT_NORMALIZED)
|
|
{
|
|
t1=z; t1*=t1;
|
|
t3*=t1;
|
|
t1*=z;
|
|
Yzzz*=t1;
|
|
}
|
|
if (t3==x)
|
|
{
|
|
if (Yzzz!=y || y==0)
|
|
{
|
|
clear();
|
|
lam=1;
|
|
}
|
|
else Doubling=TRUE;
|
|
}
|
|
}
|
|
if (!Doubling)
|
|
{ // Addition
|
|
t3-=x;
|
|
lam=Yzzz-y;
|
|
if (marker==MR_EPOINT_NORMALIZED) z=t3;
|
|
else z*=t3;
|
|
t1=t3; t1*=t1;
|
|
Yzzz=t1*t3;
|
|
t1*=x;
|
|
t3=t1;
|
|
t3+=t3;
|
|
x=lam; x*=x;
|
|
x-=t3;
|
|
x-=Yzzz;
|
|
t1-=x;
|
|
t1*=lam;
|
|
Yzzz*=y;
|
|
y=t1-Yzzz;
|
|
}
|
|
else
|
|
{ // doubling
|
|
t3=y; t3*=t3;
|
|
iA=get_mip()->Asize;
|
|
if (iA!=0)
|
|
{
|
|
if (marker==MR_EPOINT_NORMALIZED) t1=1;
|
|
else {t1=z; t1*=t1;}
|
|
if (ex2!=NULL) *ex2=t1;
|
|
if (iA==-3 && twist<=MR_QUADRATIC)
|
|
{
|
|
if (twist==MR_QUADRATIC) t1*=qnr;
|
|
lam=x-t1;
|
|
t1+=x;
|
|
lam*=t1;
|
|
t2=lam; t2+=t2;
|
|
lam+=t2;
|
|
}
|
|
else
|
|
{
|
|
lam=x; lam*=lam;
|
|
t2=lam; t2+=t2;
|
|
lam+=t2;
|
|
if (twist==MR_QUADRATIC) t1*=qnr;
|
|
t1*=t1;
|
|
if (twist==MR_QUARTIC_M) t1=tx(t1);
|
|
if (twist==MR_QUARTIC_D) t1=txd(t1);
|
|
if (iA!=1)
|
|
{
|
|
if (iA<MR_TOOBIG) t1*=iA;
|
|
else t1*=getA();
|
|
}
|
|
lam+=t1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
lam=x; lam*=lam;
|
|
t2=lam; t2+=lam;
|
|
lam+=t2;
|
|
}
|
|
|
|
t1=t3*x;
|
|
t1+=t1;
|
|
t1+=t1;
|
|
x=lam; x*=x;
|
|
t2=t1+t1;
|
|
x-=t2;
|
|
if (marker==MR_EPOINT_NORMALIZED) z=y;
|
|
else z*=y;
|
|
z+=z;
|
|
t3+=t3;
|
|
if (ex1!=NULL) *ex1=t3;
|
|
t3*=t3;
|
|
t3+=t3;
|
|
t1-=x;
|
|
y=t1*lam;
|
|
y-=t3;
|
|
}
|
|
|
|
marker=MR_EPOINT_GENERAL;
|
|
if (Doubling) return MR_DOUBLE;
|
|
return MR_ADD;
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
#ifndef MR_NO_ECC_MULTIADD
|
|
|
|
ECn3 mul(const ECn3& P,const Big& a,const ECn3& Q,const Big& b)
|
|
{
|
|
ECn3 X=P;
|
|
ECn3 Y=Q;
|
|
Big A=a;
|
|
Big B=b;
|
|
Big A3,B3;
|
|
ECn3 S,D,R;
|
|
|
|
int e1,e2,h1,h2,nb,t;
|
|
if (A<0) { A=-A; X=-X;}
|
|
if (B<0) { B=-B; Y=-Y;}
|
|
// joint sparse form
|
|
jsf(A,B,A3,A,B3,B);
|
|
#ifdef MR_ECN3_PROJECTIVE
|
|
X.norm(); Y.norm();
|
|
#endif
|
|
S=X+Y;
|
|
D=Y-X;
|
|
#ifdef MR_ECN3_PROJECTIVE
|
|
S.norm(); D.norm();
|
|
#endif
|
|
if (A3>B3) nb=bits(A3)-1;
|
|
else nb=bits(B3)-1;
|
|
|
|
while (nb>=0)
|
|
{
|
|
R+=R;
|
|
e1=h1=e2=h2=0;
|
|
t=0;
|
|
if (bit(A,nb)) {e2=1; t+=8;}
|
|
if (bit(A3,nb)) {h2=1; t+=4;}
|
|
if (bit(B,nb)) {e1=1; t+=2;}
|
|
if (bit(B3,nb)) {h1=1; t+=1;}
|
|
|
|
if (t==1 || t==13) R+=Y;
|
|
if (t==2 || t==14) R-=Y;
|
|
if (t==4 || t==7) R+=X;
|
|
if (t==8 || t==11) R-=X;
|
|
if (t==5) R+=S;
|
|
if (t==10) R-=S;
|
|
if (t==9) R+=D;
|
|
if (t==6) R-=D;
|
|
nb-=1;
|
|
}
|
|
#ifdef MR_ECN3_PROJECTIVE
|
|
R.norm();
|
|
#endif
|
|
return R;
|
|
}
|
|
|
|
#ifndef MR_STATIC
|
|
|
|
ECn3 mul(int n,ECn3* P,const Big* b)
|
|
{
|
|
int k,j,i,m,nb,ea;
|
|
ECn3 *G;
|
|
ECn3 R;
|
|
m=1<<n;
|
|
G=new ECn3[m];
|
|
|
|
// precomputation
|
|
|
|
for (i=0,k=1;i<n;i++)
|
|
{
|
|
for (j=0; j < (1<<i) ;j++)
|
|
{
|
|
if (j==0) G[k]=P[i];
|
|
else G[k]=G[j]+P[i];
|
|
k++;
|
|
}
|
|
}
|
|
|
|
nb=0;
|
|
for (j=0;j<n;j++)
|
|
if ((k=bits(b[j]))>nb) nb=k;
|
|
|
|
for (i=nb-1;i>=0;i--)
|
|
{
|
|
ea=0;
|
|
k=1;
|
|
for (j=0;j<n;j++)
|
|
{
|
|
if (bit(b[j],i)) ea+=k;
|
|
k<<=1;
|
|
}
|
|
R+=R;;
|
|
if (ea!=0) R+=G[ea];
|
|
}
|
|
delete [] G;
|
|
#ifdef MR_ECN3_PROJECTIVE
|
|
R.norm();
|
|
#endif
|
|
return R;
|
|
}
|
|
|
|
#endif
|
|
#endif
|