KGC_TEST/miracl/source/curve/pairing/ecn4.cpp

294 lines
6.7 KiB
C++

/***************************************************************************
*
Copyright 2013 CertiVox UK Ltd. *
*
This file is part of CertiVox MIRACL Crypto SDK. *
*
The CertiVox MIRACL Crypto SDK provides developers with an *
extensive and efficient set of cryptographic functions. *
For further information about its features and functionalities please *
refer to http://www.certivox.com *
*
* The CertiVox MIRACL Crypto SDK is free software: you can *
redistribute it and/or modify it under the terms of the *
GNU Affero General Public License as published by the *
Free Software Foundation, either version 3 of the License, *
or (at your option) any later version. *
*
* The CertiVox MIRACL Crypto SDK is distributed in the hope *
that it will be useful, but WITHOUT ANY WARRANTY; without even the *
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *
See the GNU Affero General Public License for more details. *
*
* You should have received a copy of the GNU Affero General Public *
License along with CertiVox MIRACL Crypto SDK. *
If not, see <http://www.gnu.org/licenses/>. *
*
You can be released from the requirements of the license by purchasing *
a commercial license. Buying such a license is mandatory as soon as you *
develop commercial activities involving the CertiVox MIRACL Crypto SDK *
without disclosing the source code of your own applications, or shipping *
the CertiVox MIRACL Crypto SDK with a closed source product. *
*
***************************************************************************/
/*
* MIRACL C++ Implementation file ecn4.cpp
*
* AUTHOR : M. Scott
*
* PURPOSE : Implementation of class ECn4 (Elliptic curves over n^4)
*
* WARNING: This class has been cobbled together for a specific use with
* the MIRACL library. It is not complete, and may not work in other
* applications
*
*/
#include "ecn4.h"
using namespace std;
void ECn4::get(ZZn4& a,ZZn4& b) const
{a=x;b=y;}
void ECn4::get(ZZn4& a) const
{a=x;}
BOOL ECn4::iszero(void) const
{if (marker==MR_EPOINT_INFINITY) return TRUE; return FALSE;}
BOOL ECn4::set(const ZZn4& xx,const ZZn4& yy)
{
if (yy*yy!=rhs(xx)) return FALSE;
x=xx;
y=yy;
marker=MR_EPOINT_NORMALIZED;
return TRUE;
}
BOOL ECn4::set(const ZZn4& xx)
{
ZZn4 w=rhs(xx);
if (!w.iszero())
{
w=sqrt(w);
if (w.iszero()) return FALSE;
}
x=xx;
y=w;
marker=MR_EPOINT_NORMALIZED;
return TRUE;
}
ECn4 operator-(const ECn4& a)
{ECn4 w;
if (a.marker!=MR_EPOINT_INFINITY)
{w.x=a.x; w.y=-a.y; w.marker=a.marker;}
return w;
}
ECn4& ECn4::operator*=(const Big& k)
{
int i,j,n,nb,nbs,nzs;
ECn4 p2,pt,t[11];
Big h,kk;
if (k==0)
{
clear();
return *this;
}
if (k==1)
{
return (*this);
}
pt=*this;
kk=k;
if (kk<0)
{
pt=-pt;
kk=-k;
}
h=3*kk;
p2=pt+pt;
t[0]=pt;
for (i=1;i<=10;i++)
t[i]=t[i-1]+p2;
// Left to Right method
nb=bits(h);
for (i=nb-2;i>=1;)
{
n=naf_window(kk,h,i,&nbs,&nzs,11);
for (j=0;j<nbs;j++) pt+=pt;
if (n>0) pt+=t[n/2];
if (n<0) pt-=t[(-n)/2];
i-=nbs;
if (nzs)
{
for (j=0;j<nzs;j++) pt+=pt;
i-=nzs;
}
}
*this=pt;
return *this;
}
ECn4 operator*(const Big& r,const ECn4& P)
{
ECn4 T=P;
T*=r;
return T;
}
#ifndef MR_NO_STANDARD_IO
ostream& operator<<(ostream& s,const ECn4& b)
{
ZZn4 x,y;
if (b.iszero())
s << "(Infinity)";
else
{
b.get(x,y);
s << "(" << x << "," << y << ")";
}
return s;
}
#endif
ECn4 operator+(const ECn4& a,const ECn4& b)
{ECn4 c=a; c+=b; return c;}
ECn4 operator-(const ECn4& a,const ECn4& b)
{ECn4 c=a; c-=b; return c;}
ECn4& ECn4::operator-=(const ECn4& z)
{ECn4 t=(-z); *this+=t; return *this; }
ECn4& ECn4::operator+=(const ECn4& z)
{
ZZn4 lam;
add(z,lam);
return *this;
}
BOOL ECn4::add(const ECn4& z,ZZn4& lam)
{
int twist=get_mip()->TWIST;
if (marker==MR_EPOINT_INFINITY)
{
*this=z;
return FALSE;
}
if (z.marker==MR_EPOINT_INFINITY)
{
return FALSE;
}
if (x!=z.x)
{
ZZn4 t=y; t-=z.y;
ZZn4 t2=x; t2-=z.x;
lam=t; lam/=t2;
x+=z.x; t=lam; t*=t; t-=x; x=t;
y=z.x; y-=x; y*=lam; y-=z.y;
}
else
{
if (y!=z.y || y.iszero())
{
clear();
lam=(ZZn4)1;
return TRUE; // any non-zero value
}
ZZn4 t=x;
ZZn4 t2=x;
// lam=(3*(x*x)+getA())/(y+y);
lam=x;
lam*=lam;
lam*=3;
if (twist==MR_QUADRATIC)
{
// ZZn4 a4;
// ZZn2 x((ZZn)0,getA());
// a4.set(x,(ZZn2)0); // A*i^4
lam+=txx( (ZZn2)getA() );
// lam+=a4;
}
else lam+=getA();
lam/=(y+y);
t2+=x;
x=lam;
x*=x;
x-=t2;
t-=x;
t*=lam;
t-=y;
y=t;
}
marker=MR_EPOINT_GENERAL;
return TRUE;
}
#ifndef MR_NO_ECC_MULTIADD
#ifndef MR_STATIC
ECn4 mul(int n,ECn4* P,const Big* b)
{
int k,j,i,m,nb,ea;
ECn4 *G;
ECn4 R;
m=1<<n;
G=new ECn4[m];
// precomputation
for (i=0,k=1;i<n;i++)
{
for (j=0; j < (1<<i) ;j++)
{
if (j==0) G[k]=P[i];
else G[k]=G[j]+P[i];
k++;
}
}
nb=0;
for (j=0;j<n;j++)
if ((k=bits(b[j]))>nb) nb=k;
for (i=nb-1;i>=0;i--)
{
ea=0;
k=1;
for (j=0;j<n;j++)
{
if (bit(b[j],i)) ea+=k;
k<<=1;
}
R+=R;;
if (ea!=0) R+=G[ea];
}
delete [] G;
return R;
}
#endif
#endif