KGC_TEST/miracl/source/curve/pairing/mnt_pair.cpp

1350 lines
25 KiB
C++

/***************************************************************************
*
Copyright 2013 CertiVox UK Ltd. *
*
This file is part of CertiVox MIRACL Crypto SDK. *
*
The CertiVox MIRACL Crypto SDK provides developers with an *
extensive and efficient set of cryptographic functions. *
For further information about its features and functionalities please *
refer to http://www.certivox.com *
*
* The CertiVox MIRACL Crypto SDK is free software: you can *
redistribute it and/or modify it under the terms of the *
GNU Affero General Public License as published by the *
Free Software Foundation, either version 3 of the License, *
or (at your option) any later version. *
*
* The CertiVox MIRACL Crypto SDK is distributed in the hope *
that it will be useful, but WITHOUT ANY WARRANTY; without even the *
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *
See the GNU Affero General Public License for more details. *
*
* You should have received a copy of the GNU Affero General Public *
License along with CertiVox MIRACL Crypto SDK. *
If not, see <http://www.gnu.org/licenses/>. *
*
You can be released from the requirements of the license by purchasing *
a commercial license. Buying such a license is mandatory as soon as you *
develop commercial activities involving the CertiVox MIRACL Crypto SDK *
without disclosing the source code of your own applications, or shipping *
the CertiVox MIRACL Crypto SDK with a closed source product. *
*
***************************************************************************/
/*
*
* mnt_pair.cpp
*
* MNT curve, ate pairing embedding degree 6, ideal for security level AES-80
*
*
* Irreducible binomial MUST be of the form x^6+2. This excludes many of the curves
* found using the mnt utility!
* NOTE: This version uses a "compositum". That is the ZZn6 class is a cubic tower over ZZn2, but can
* also be considered as a quadratic tower over ZZn3. The routine shuffle converts from one form to the other.
* The former is fastest for ZZn6 arithmetic, the latter form is required for handling the second parameter
* to the pairing, which is on the quadratic twist E(Fp3)
*
* Provides high level interface to pairing functions
*
* GT=pairing(G2,G1)
*
* This is calculated on a Pairing Friendly Curve (PFC), which must first be defined.
*
* G1 is a point over the base field, and G2 is a point over an extension field of degree 3
* GT is a finite field point over the 6-th extension, where 6 is the embedding degree.
*
*/
#define MR_PAIRING_MNT
#include "pairing_3.h"
// AES_SECURITY=80 bit curve
// MNT curve parameters, x,A,B
// Thanks to Drew Sutherland for providing the MNT curve
// irreducible poly is x^6+2
static char param[]="-D285DA0CFEF02F06F812";
static char curveB[]="77479D33943B5B1F590B54258B72F316B3261D45";
void read_only_error(void)
{
cout << "Attempt to write to read-only object" << endl;
exit(0);
}
void set_frobenius_constant(ZZn2 &X)
{
Big p=get_modulus();
switch (get_mip()->pmod8)
{
case 5:
X.set((Big)0,(Big)1); // = (sqrt(-2)^(p-1)/2
break;
case 3: // = (1+sqrt(-1))^(p-1)/2
X.set((Big)1,(Big)1);
break;
case 7:
X.set((Big)2,(Big)1); // = (2+sqrt(-1))^(p-1)/2
default: break;
}
X=pow(X,(p-1)/3);
}
// Using SHA as basic hash algorithm
//
// Hash function
//
#define HASH_LEN 20
Big H1(char *string)
{ // Hash a zero-terminated string to a number < modulus
Big h,p;
char s[HASH_LEN];
int i,j;
sha sh;
shs_init(&sh);
for (i=0;;i++)
{
if (string[i]==0) break;
shs_process(&sh,string[i]);
}
shs_hash(&sh,s);
p=get_modulus();
h=1; j=0; i=1;
forever
{
h*=256;
if (j==HASH_LEN) {h+=i++; j=0;}
else h+=s[j++];
if (h>=p) break;
}
h%=p;
return h;
}
void PFC::start_hash(void)
{
shs_init(&SH);
}
Big PFC::finish_hash_to_group(void)
{
Big hash;
char s[HASH_LEN];
shs_hash(&SH,s);
hash=from_binary(HASH_LEN,s);
return hash%(*ord);
}
void PFC::add_to_hash(const GT& x)
{
ZZn6 u=x.g;
ZZn2 v;
ZZn l,h;
Big a,xx[2];
int i,j,m;
u.get(v);
v.get(l,h);
xx[0]=l; xx[1]=h;
for (i=0;i<2;i++)
{
a=xx[i];
while (a>0)
{
m=a%256;
shs_process(&SH,m);
a/=256;
}
}
}
void PFC::add_to_hash(const G2& x)
{
ZZn3 X,Y;
ECn3 v=x.g;
Big a;
ZZn xx[6];
int i,m;
v.get(X,Y);
X.get(xx[0],xx[1],xx[2]);
Y.get(xx[3],xx[4],xx[5]);
for (i=0;i<6;i++)
{
a=(Big)xx[i];
while (a>0)
{
m=a%256;
shs_process(&SH,m);
a/=256;
}
}
}
void PFC::add_to_hash(const G1& x)
{
Big a,X,Y;
int i,m;
x.g.get(X,Y);
a=X;
while (a>0)
{
m=a%256;
shs_process(&SH,m);
a/=256;
}
a=Y;
while (a>0)
{
m=a%256;
shs_process(&SH,m);
a/=256;
}
}
void PFC::add_to_hash(const Big& x)
{
int m;
Big a=x;
while (a>0)
{
m=a%256;
shs_process(&SH,m);
a/=256;
}
}
void PFC::add_to_hash(char *x)
{
int i=0;
while (x[i]!=0)
{
shs_process(&SH,x[i]);
i++;
}
}
Big H2(ZZn6 y)
{ // Hash and compress an Fp6 to a big number
sha sh;
ZZn u,v,w;
ZZn2 x;
Big a,h,xx[2];
char s[HASH_LEN];
int i,j,m;
shs_init(&sh);
y.get(x);
x.get(u,v);
xx[0]=u; xx[1]=v;
for (i=0;i<2;i++)
{
a=xx[i];
while (a>0)
{
m=a%256;
shs_process(&sh,m);
a/=256;
}
}
shs_hash(&sh,s);
h=from_binary(HASH_LEN,s);
return h;
}
#ifndef MR_AFFINE_ONLY
void force(ZZn& x,ZZn& y,ZZn& z,ECn& A)
{ // A=(x,y,z)
copy(getbig(x),A.get_point()->X);
copy(getbig(y),A.get_point()->Y);
copy(getbig(z),A.get_point()->Z);
A.get_point()->marker=MR_EPOINT_GENERAL;
}
void extract(ECn &A, ZZn& x,ZZn& y,ZZn& z)
{ // (x,y,z) <- A
big t;
x=(A.get_point())->X;
y=(A.get_point())->Y;
t=(A.get_point())->Z;
if (A.get_status()!=MR_EPOINT_GENERAL) z=1;
else z=t;
}
#endif
void force(ZZn& x,ZZn& y,ECn& A)
{ // A=(x,y)
copy(getbig(x),A.get_point()->X);
copy(getbig(y),A.get_point()->Y);
A.get_point()->marker=MR_EPOINT_NORMALIZED;
}
void extract(ECn& A,ZZn& x,ZZn& y)
{ // (x,y) <- A
if (A.iszero())
{
x=0; y=0;
return;
}
x=(A.get_point())->X;
y=(A.get_point())->Y;
}
ZZn6 shuffle(const ZZn3 &first, const ZZn3 &second)
{ // shuffle from a pair ZZn3's to three ZZn2's, as required by ZZn6
ZZn6 w;
ZZn x0,x1,x2,x3,x4,x5;
ZZn2 t0,t1,t2;
first.get(x0,x2,x4);
second.get(x1,x3,x5);
t0.set(x0,x3);
t1.set(x1,x4);
t2.set(x2,x5);
w.set(t0,t1,t2);
return w;
}
void unshuffle(ZZn6 &S,ZZn3 &first,ZZn3 &second)
{ // unshuffle a ZZn6 into two ZZn3's
ZZn x0,x1,x2,x3,x4,x5;
ZZn2 t0,t1,t2;
S.get(t0,t1,t2);
t0.get(x0,x3);
t1.get(x1,x4);
t2.get(x2,x5);
first.set(x0,x2,x4);
second.set(x1,x3,x5);
}
// Calculate q*P. P(X,Y) -> P(X^p,Y^p))
void q_power_frobenius(ECn3 &S,ZZn2& X)
{
ZZn6 X1,X2,Y1,Y2;
ZZn3 Sx,Sy,T;
int qnr=get_mip()->cnr;
S.get(Sx,Sy);
// untwist
Sx=Sx/qnr;
Sy=tx(Sy);
Sy=Sy/(qnr*qnr);
X1=shuffle(Sx,(ZZn3)0); Y1=shuffle((ZZn3)0,Sy);
X1.powq(X); Y1.powq(X);
unshuffle(X1,Sx,T); unshuffle(Y1,T,Sy);
// twist
Sx=qnr*Sx;
Sy=txd(Sy*qnr*qnr);
S.set(Sx,Sy);
}
//
// Line from A to destination C. Let A=(x,y)
// Line Y-slope.X-c=0, through A, so intercept c=y-slope.x
// Line Y-slope.X-y+slope.x = (Y-y)-slope.(X-x) = 0
// Now evaluate at Q -> return (Qy-y)-slope.(Qx-x)
//
ZZn6 line(ECn3& A,ECn3& C,ECn3& B,int type,ZZn3& slope,ZZn3& ex1,ZZn3& ex2,ZZn& Px,ZZn& Py)
{
ZZn6 w;
ZZn3 d;
ZZn3 x,y;
#ifdef MR_ECN3_PROJECTIVE
ZZn3 z,z3,t;
C.getZ(z3);
d.set1(Py);
if (type==MR_ADD)
{ // exploit that B is in affine
ZZn3 x2,y2;
B.get(x2,y2);
y2*=z3; d*=z3;
w=shuffle(y2-slope*(Px+x2),d);
}
if (type==MR_DOUBLE)
{ // use extra information from point doubling
A.get(x,y,z);
w=shuffle(ex1-slope*(Px*ex2+x),d*z3*ex2);
}
#else
A.get(x,y);
d.set1(Py);
w=shuffle(y-slope*(Px+x),d);
#endif
return w;
}
//
// Add A=A+B (or A=A+A)
// Return line function value
//
ZZn6 g(ECn3& A,ECn3& B,ZZn& Px,ZZn& Py)
{
BOOL type;
ZZn3 lam,ex1,ex2;
ECn3 Q=A;
// Evaluate line from A to A+B
type=A.add(B,lam,&ex1,&ex2);
return line(Q,A,B,type,lam,ex1,ex2,Px,Py);
}
// if multiples of G2 can be precalculated, its a lot faster!
ZZn6 gp(ZZn3* ptable,int &j,ZZn& Px,ZZn& Py)
{
ZZn6 w;
ZZn3 d;
d.set1(Py);
w=shuffle(ptable[j]*Px+ptable[j+1],d);
j+=2;
return w;
}
//
// Spill precomputation on pairing to byte array
//
int PFC::spill(G2& w,char *& bytes)
{
int i,j,len,m;
int bytes_per_big=(MIRACL/8)*(get_mip()->nib-1);
ZZn a,b,c;
Big X=*x;
if (w.ptable==NULL) return 0;
m=2*(bits(X)-2+ham(X));
len=m*3*bytes_per_big;
bytes=new char[len];
for (i=j=0;i<m;i++)
{
w.ptable[i].get(a,b,c);
to_binary((Big)a,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
to_binary((Big)b,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
to_binary((Big)c,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
}
delete [] w.ptable;
w.ptable=NULL;
return len;
}
//
// Restore precomputation on pairing to byte array
//
void PFC::restore(char * bytes,G2& w)
{
int i,j,len,m;
int bytes_per_big=(MIRACL/8)*(get_mip()->nib-1);
ZZn a,b,c;
Big X=*x;
if (w.ptable!=NULL) return;
m=2*(bits(X)-2+ham(X));
len=m*3*bytes_per_big;
w.ptable=new ZZn3[m];
for (i=j=0;i<m;i++)
{
a=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
b=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
c=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
w.ptable[i].set(a,b,c);
}
for (i=0;i<len;i++) bytes[i]=0;
delete [] bytes;
}
// precompute G2 table for pairing
int PFC::precomp_for_pairing(G2& w)
{
int i,j,nb,type,len;
ECn3 A,Q,B;
ZZn3 lam,x1,y1;
Big X=*x;
A=w.g;
A.norm();
B=A;
nb=bits(X);
j=0;
len=2*(nb-2+ham(X));
w.ptable=new ZZn3[len];
get_mip()->coord=MR_AFFINE; // switch to affine
for (i=nb-2;i>=0;i--)
{
Q=A;
// Evaluate line from A to A+B
A.add(A,lam,NULL,NULL);
Q.get(x1,y1);
w.ptable[j++]=-lam; w.ptable[j++]=y1-lam*x1;
if (bit(X,i)==1)
{
Q=A;
type=A.add(B,lam,NULL,NULL);
Q.get(x1,y1);
w.ptable[j++]=-lam; w.ptable[j++]=y1-lam*x1;
}
}
get_mip()->coord=MR_PROJECTIVE;
return len;
}
GT PFC::multi_miller(int n,G2** QQ,G1** PP)
{
GT z;
ZZn *Px,*Py;
int i,j,*k,nb;
ECn3 *Q,*A;
ECn P;
ZZn6 res;
Big X=*x;
Px=new ZZn[n];
Py=new ZZn[n];
Q=new ECn3[n];
A=new ECn3[n];
k=new int[n];
nb=bits(X);
res=1;
for (j=0;j<n;j++)
{
k[j]=0;
P=PP[j]->g; normalise(P); Q[j]=QQ[j]->g;
extract(P,Px[j],Py[j]);
Px[j]+=Px[j];
Py[j]+=Py[j];
}
for (j=0;j<n;j++)
{
#ifdef MR_ECN3_PROJECTIVE
Q[j].norm();
#endif
A[j]=Q[j];
}
for (i=nb-2;i>=0;i--)
{
res*=res;
for (j=0;j<n;j++)
{
if (QQ[j]->ptable==NULL)
res*=g(A[j],A[j],Px[j],Py[j]);
else
res*=gp(QQ[j]->ptable,k[j],Px[j],Py[j]);
}
if (bit(X,i)==1)
for (j=0;j<n;j++)
{
if (QQ[j]->ptable==NULL)
res*=g(A[j],Q[j],Px[j],Py[j]);
else
res*=gp(QQ[j]->ptable,k[j],Px[j],Py[j]);
}
if (res.iszero()) return 0;
}
delete [] k;
delete [] A;
delete [] Q;
delete [] Py;
delete [] Px;
z.g=res;
return z;
}
//
// R-ate Pairing G2 x G1 -> GT
//
// P is a point of order q in G1. Q(x,y) is a point of order q in G2.
// Note that Q is a point on the sextic twist of the curve over Fp^2, P(x,y) is a point on the
// curve over the base field Fp
//
GT PFC::miller_loop(const G2& QQ,const G1& PP)
{
GT z;
int i,j,n,nb,nbw,nzs;
ECn3 A,Q;
ECn P;
ZZn Px,Py;
BOOL precomp;
ZZn6 res;
Big X=*x;
P=PP.g; Q=QQ.g;
#ifdef MR_ECN3_PROJECTIVE
Q.norm();
#endif
precomp=FALSE;
if (QQ.ptable!=NULL) precomp=TRUE;
normalise(P);
extract(P,Px,Py);
Px+=Px; // because x^6+2 is irreducible.. simplifies line function calculation
Py+=Py;
res=1;
A=Q; // reset A
nb=bits(X);
res.mark_as_miller();
j=0;
for (i=nb-2;i>=0;i--)
{
res*=res;
if (precomp) res*=gp(QQ.ptable,j,Px,Py);
else res*=g(A,A,Px,Py);
if (bit(X,i)==1)
{
if (precomp) res*=gp(QQ.ptable,j,Px,Py);
else res*=g(A,Q,Px,Py);
}
}
z.g=res;
return z;
}
GT PFC::final_exp(const GT& z)
{
GT y;
ZZn6 w,res;
Big X=*x;
res=z.g;
w=res;
w.powq(*frob);
res*=w; // ^(p+1)
w=res;
w.powq(*frob); w.powq(*frob); w.powq(*frob);
res=w/res; // ^(p^3-1)
// exploit the clever "trick" for a half-length exponentiation!
res.mark_as_unitary();
w=res;
res.powq(*frob); // res*=res; // res=pow(res,CF);
if (X<0) res/=powu(w,-X);
else res*=powu(w,X);
y.g=res;
return y;
}
PFC::PFC(int s, csprng *rng)
{
int mod_bits,words;
if (s!=80)
{
cout << "No suitable curve available" << endl;
exit(0);
}
mod_bits=2*s;
if (mod_bits%MIRACL==0)
words=(mod_bits/MIRACL);
else
words=(mod_bits/MIRACL)+1;
#ifdef MR_SIMPLE_BASE
miracl *mip=mirsys((MIRACL/4)*words,16);
#else
miracl *mip=mirsys(words,0);
mip->IOBASE=16;
#endif
B=new Big;
x=new Big;
mod=new Big;
ord=new Big;
cof=new Big;
npoints=new Big;
trace=new Big;
frob=new ZZn2;
*B=curveB;
S=s;
*x=param;
Big X=*x;
*mod=X*X+1;
*npoints=X*X-X+1;
*trace=X+1;
*cof=X*X+X+1;
*ord=*npoints;
ecurve(-3,*B,*mod,MR_PROJECTIVE);
set_frobenius_constant(*frob);
Big sru=pow((ZZn)-2,(*mod-1)/6); // x^6+2 is irreducible
set_zzn3(-2,sru);
mip->TWIST=MR_QUADRATIC; // twisted curve E'(ZZn3)
RNG = rng;
}
PFC::~PFC()
{
delete B;
delete x;
delete mod;
delete ord;
delete cof;
delete npoints;
delete trace;
delete frob;
mirexit();
}
G1 PFC::mult(const G1& w,const Big& k)
{
G1 z;
if (w.mtable!=NULL)
{ // we have precomputed values
Big e=k;
if (k<0) e=-e;
int i,j,t=w.mtbits; //MR_ROUNDUP(2*S,WINDOW_SIZE);
j=recode(e,t,WINDOW_SIZE,t-1);
z.g=w.mtable[j];
for (i=t-2;i>=0;i--)
{
j=recode(e,t,WINDOW_SIZE,i);
z.g+=z.g;
if (j>0) z.g+=w.mtable[j];
}
if (k<0) z.g=-z.g;
}
else
{
z.g=w.g;
z.g*=k;
}
return z;
}
// GLV + Galbraith-Scott
G2 PFC::mult(const G2& w,const Big& k)
{
G2 z;
Big X=*x;
if (w.mtable!=NULL)
{ // we have precomputed values
Big e=k;
if (k<0) e=-e;
int i,j,t=w.mtbits; //MR_ROUNDUP(2*S,WINDOW_SIZE);
j=recode(e,t,WINDOW_SIZE,t-1);
z.g=w.mtable[j];
for (i=t-2;i>=0;i--)
{
j=recode(e,t,WINDOW_SIZE,i);
z.g+=z.g;
if (j>0) z.g+=w.mtable[j];
}
if (k<0) z.g=-z.g;
}
else
{
ECn3 v=w.g;
q_power_frobenius(v,*frob);
z.g=mul(v,k/X,w.g,k%X);
}
return z;
}
// GLV method + Galbraith-Scott idea
GT PFC::power(const GT& w,const Big& k)
{
GT z;
Big X=*x;
if (w.etable!=NULL)
{ // precomputation is available
Big e=k;
if (k<0) e=-e;
int i,j,t=w.etbits; //MR_ROUNDUP(2*S,WINDOW_SIZE);
j=recode(e,t,WINDOW_SIZE,t-1);
z.g=w.etable[j];
for (i=t-2;i>=0;i--)
{
j=recode(e,t,WINDOW_SIZE,i);
z.g*=z.g;
if (j>0) z.g*=w.etable[j];
}
if (k<0) z.g=inverse(z.g);
}
else
{
ZZn6 y=w.g;
y.powq(*frob);
z.g=powu(y,k/X,w.g,k%X);
}
return z;
}
// Use Scott et al. idea - http://eprint.iacr.org/2008/530.pdf
// Map to point of correct order
void map(ECn3 &S,Big x, ZZn2& X)
{ // S=Phi(2xP)+phi^2(2xP)
ZZn6 X1,X2,Y1,Y2;
ZZn3 Sx,Sy,T;
ECn3 S2;
int qnr=get_mip()->cnr;
S*=x; S+=S; // hard work done here
S.get(Sx,Sy);
// untwist
Sx=Sx/qnr;
Sy=tx(Sy);
Sy=Sy/(qnr*qnr);
X1=shuffle(Sx,(ZZn3)0); Y1=shuffle((ZZn3)0,Sy);
X1.powq(X); Y1.powq(X);
X2=X1; Y2=Y1;
X2.powq(X); Y2.powq(X);
unshuffle(X1,Sx,T); unshuffle(Y1,T,Sy);
// twist
Sx=qnr*Sx;
Sy=txd(Sy*qnr*qnr);
S.set(Sx,Sy);
unshuffle(X2,Sx,T); unshuffle(Y2,T,Sy);
//twist (again, like we did last summer...)
Sx=qnr*Sx;
Sy=txd(Sy*qnr*qnr);
S2.set(Sx,Sy);
S+=S2;
}
// random group element
void PFC::random(Big& w)
{
if (RNG==NULL) w=rand(*ord);
else w=strong_rand(RNG,*ord);
}
// random AES key
void PFC::rankey(Big& k)
{
if (RNG==NULL) k=rand(S,2);
else k=strong_rand(RNG,S,2);
}
void PFC::hash_and_map(G2& w,char *ID)
{
int i;
ZZn3 XX;
Big X=*x;
Big x0=H1(ID);
forever
{
x0+=1;
XX.set2((ZZn)x0);
if (!w.g.set(XX)) continue;
break;
}
map(w.g,X,*frob);
}
void PFC::random(G2& w)
{
int i;
ZZn3 XX;
Big X=*x;
Big x0;
if (RNG==NULL) x0=rand(*mod);
else x0=strong_rand(RNG,*mod);
forever
{
x0+=1;
XX.set2((ZZn)x0);
if (!w.g.set(XX)) continue;
break;
}
map(w.g,X,*frob);
}
void PFC::hash_and_map(G1& w,char *ID)
{
Big x0=H1(ID);
while (!w.g.set(x0,x0)) x0+=1;
}
void PFC::random(G1& w)
{
Big x0;
if (RNG==NULL) x0=rand(*mod);
else x0=strong_rand(RNG,*mod);
while (!w.g.set(x0,x0)) x0+=1;
}
Big PFC::hash_to_aes_key(const GT& w)
{
Big m=pow((Big)2,S);
return H2(w.g)%m;
}
Big PFC::hash_to_group(char *ID)
{
Big m=H1(ID);
return m%(*ord);
}
GT operator*(const GT& x,const GT& y)
{
GT z=x;
z.g*=y.g;
return z;
}
GT operator/(const GT& x,const GT& y)
{
GT z=x;
z.g/=y.g;
return z;
}
//
// spill precomputation on GT to byte array
//
int GT::spill(char *& bytes)
{
int i,j,n=(1<<WINDOW_SIZE);
int bytes_per_big=(MIRACL/8)*(get_mip()->nib-1);
int len=n*6*bytes_per_big+1;
ZZn2 a,b,c;
Big x,y;
if (etable==NULL) return 0;
bytes=new char[len];
for (i=j=0;i<n;i++)
{
etable[i].get(a,b,c);
a.get(x,y);
to_binary(x,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
to_binary(y,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
b.get(x,y);
to_binary(x,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
to_binary(y,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
c.get(x,y);
to_binary(x,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
to_binary(y,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
}
bytes[j]=etbits;
delete [] etable;
etable=NULL;
return len;
}
//
// restore precomputation for GT from byte array
//
void GT::restore(char *bytes)
{
int i,j,n=(1<<WINDOW_SIZE);
int bytes_per_big=(MIRACL/8)*(get_mip()->nib-1);
// int len=n*6*bytes_per_big;
ZZn2 a,b,c;
Big x,y;
if (etable!=NULL) return;
etable=new ZZn6[1<<WINDOW_SIZE];
for (i=j=0;i<n;i++)
{
x=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
y=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
a.set(x,y);
x=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
y=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
b.set(x,y);
x=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
y=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
c.set(x,y);
etable[i].set(a,b,c);
}
etbits=bytes[j];
delete [] bytes;
}
G1 operator+(const G1& x,const G1& y)
{
G1 z=x;
z.g+=y.g;
return z;
}
G1 operator-(const G1& x)
{
G1 z=x;
z.g=-z.g;
return z;
}
//
// spill precomputation on G1 to byte array
//
int G1::spill(char *& bytes)
{
int i,j,n=(1<<WINDOW_SIZE);
int bytes_per_big=(MIRACL/8)*(get_mip()->nib-1);
int len=n*2*bytes_per_big+1;
Big x,y;
if (mtable==NULL) return 0;
bytes=new char[len];
for (i=j=0;i<n;i++)
{
mtable[i].get(x,y);
to_binary(x,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
to_binary(y,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
}
bytes[j]=mtbits;
delete [] mtable;
mtable=NULL;
return len;
}
//
// restore precomputation for G1 from byte array
//
void G1::restore(char *bytes)
{
int i,j,n=(1<<WINDOW_SIZE);
int bytes_per_big=(MIRACL/8)*(get_mip()->nib-1);
// int len=n*2*bytes_per_big;
Big x,y;
if (mtable!=NULL) return;
mtable=new ECn[1<<WINDOW_SIZE];
for (i=j=0;i<n;i++)
{
x=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
y=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
mtable[i].set(x,y);
}
mtbits=bytes[j];
delete [] bytes;
}
G2 operator+(const G2& x,const G2& y)
{
G2 z=x;
y.g.norm();
z.g+=y.g;
return z;
}
G2 operator-(const G2& x)
{
G2 z=x;
z.g=-z.g;
return z;
}
//
// spill precomputation on G2 to byte array
//
int G2::spill(char *& bytes)
{
int i,j,n=(1<<WINDOW_SIZE);
int bytes_per_big=(MIRACL/8)*(get_mip()->nib-1);
int len=n*6*bytes_per_big+1;
ZZn3 x,y;
ZZn a,b,c;
if (mtable==NULL) return 0;
bytes=new char[len];
for (i=j=0;i<n;i++)
{
mtable[i].get(x,y);
x.get(a,b,c);
to_binary((Big)a,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
to_binary((Big)b,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
to_binary((Big)c,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
y.get(a,b,c);
to_binary((Big)a,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
to_binary((Big)b,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
to_binary((Big)c,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
}
bytes[j]=mtbits;
delete [] mtable;
mtable=NULL;
return len;
}
//
// restore precomputation for G2 from byte array
//
void G2::restore(char *bytes)
{
int i,j,n=(1<<WINDOW_SIZE);
int bytes_per_big=(MIRACL/8)*(get_mip()->nib-1);
// int len=n*6*bytes_per_big;
ZZn3 x,y;
ZZn a,b,c;
if (mtable!=NULL) return;
mtable=new ECn3[1<<WINDOW_SIZE];
for (i=j=0;i<n;i++)
{
a=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
b=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
c=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
x.set(a,b,c);
a=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
b=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
c=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
y.set(a,b,c);
mtable[i].set(x,y);
}
mtbits=bytes[j];
delete [] bytes;
}
BOOL PFC::member(const GT& z)
{
ZZn6 r=z.g;
ZZn6 w=z.g;
Big X=*x;
if (!r.is_unitary()) return FALSE;
if (r*conj(r)!=(ZZn6)1) return FALSE; // not unitary
w.powq(*frob);
if (X<0) r=powu(inverse(r),-X);
else r=powu(r,X);
if (r==w) return TRUE;
return FALSE;
}
GT PFC::pairing(const G2& x,const G1& y)
{
GT z;
z=miller_loop(x,y);
z=final_exp(z);
return z;
}
GT PFC::multi_pairing(int n,G2 **y,G1 **x)
{
GT z;
z=multi_miller(n,y,x);
z=final_exp(z);
return z;
}
int PFC::precomp_for_mult(G1& w,BOOL small)
{
ECn v=w.g;
int i,j,k,bp,is,t;
if (small) t=MR_ROUNDUP(2*S,WINDOW_SIZE);
else t=MR_ROUNDUP(bits(*ord),WINDOW_SIZE);
w.mtable=new ECn[1<<WINDOW_SIZE];
w.mtable[1]=v;
w.mtbits=t;
for (j=0;j<t;j++)
v+=v;
k=1;
for (i=2;i<(1<<WINDOW_SIZE);i++)
{
if (i==(1<<k))
{
k++;
normalise(v);
w.mtable[i]=v;
for (j=0;j<t;j++)
v+=v;
continue;
}
bp=1;
for (j=0;j<k;j++)
{
if (i&bp)
{
is=1<<j;
w.mtable[i]+=w.mtable[is];
}
bp<<=1;
}
normalise(w.mtable[i]);
}
return (1<<WINDOW_SIZE);
}
int PFC::precomp_for_mult(G2& w,BOOL small)
{
ECn3 v;
ZZn3 x,y;
int i,j,k,bp,is,t;
if (small) t=MR_ROUNDUP(2*S,WINDOW_SIZE);
else t=MR_ROUNDUP(bits(*ord),WINDOW_SIZE);
w.g.norm();
v=w.g;
w.mtable=new ECn3[1<<WINDOW_SIZE];
v.norm();
w.mtable[1]=v;
w.mtbits=t;
for (j=0;j<t;j++)
v+=v;
k=1;
for (i=2;i<(1<<WINDOW_SIZE);i++)
{
if (i==(1<<k))
{
k++;
v.norm();
w.mtable[i]=v;
for (j=0;j<t;j++)
v+=v;
continue;
}
bp=1;
for (j=0;j<k;j++)
{
if (i&bp)
{
is=1<<j;
w.mtable[i]+=w.mtable[is];
}
bp<<=1;
}
w.mtable[i].norm();
}
return (1<<WINDOW_SIZE);
}
int PFC::precomp_for_power(GT& w,BOOL small)
{
ZZn6 v=w.g;
int i,j,k,bp,is,t;
if (small) t=MR_ROUNDUP(2*S,WINDOW_SIZE);
else t=MR_ROUNDUP(bits(*ord),WINDOW_SIZE);
w.etable=new ZZn6[1<<WINDOW_SIZE];
w.etable[0]=1;
w.etable[1]=v;
w.etbits=t;
for (j=0;j<t;j++)
v*=v;
k=1;
for (i=2;i<(1<<WINDOW_SIZE);i++)
{
if (i==(1<<k))
{
k++;
w.etable[i]=v;
for (j=0;j<t;j++)
v*=v;
continue;
}
bp=1;
w.etable[i]=1;
for (j=0;j<k;j++)
{
if (i&bp)
{
is=1<<j;
w.etable[i]*=w.etable[is];
}
bp<<=1;
}
}
return (1<<WINDOW_SIZE);
}