1350 lines
25 KiB
C++
1350 lines
25 KiB
C++
|
|
/***************************************************************************
|
|
*
|
|
Copyright 2013 CertiVox UK Ltd. *
|
|
*
|
|
This file is part of CertiVox MIRACL Crypto SDK. *
|
|
*
|
|
The CertiVox MIRACL Crypto SDK provides developers with an *
|
|
extensive and efficient set of cryptographic functions. *
|
|
For further information about its features and functionalities please *
|
|
refer to http://www.certivox.com *
|
|
*
|
|
* The CertiVox MIRACL Crypto SDK is free software: you can *
|
|
redistribute it and/or modify it under the terms of the *
|
|
GNU Affero General Public License as published by the *
|
|
Free Software Foundation, either version 3 of the License, *
|
|
or (at your option) any later version. *
|
|
*
|
|
* The CertiVox MIRACL Crypto SDK is distributed in the hope *
|
|
that it will be useful, but WITHOUT ANY WARRANTY; without even the *
|
|
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *
|
|
See the GNU Affero General Public License for more details. *
|
|
*
|
|
* You should have received a copy of the GNU Affero General Public *
|
|
License along with CertiVox MIRACL Crypto SDK. *
|
|
If not, see <http://www.gnu.org/licenses/>. *
|
|
*
|
|
You can be released from the requirements of the license by purchasing *
|
|
a commercial license. Buying such a license is mandatory as soon as you *
|
|
develop commercial activities involving the CertiVox MIRACL Crypto SDK *
|
|
without disclosing the source code of your own applications, or shipping *
|
|
the CertiVox MIRACL Crypto SDK with a closed source product. *
|
|
*
|
|
***************************************************************************/
|
|
/*
|
|
*
|
|
* mnt_pair.cpp
|
|
*
|
|
* MNT curve, ate pairing embedding degree 6, ideal for security level AES-80
|
|
*
|
|
*
|
|
* Irreducible binomial MUST be of the form x^6+2. This excludes many of the curves
|
|
* found using the mnt utility!
|
|
* NOTE: This version uses a "compositum". That is the ZZn6 class is a cubic tower over ZZn2, but can
|
|
* also be considered as a quadratic tower over ZZn3. The routine shuffle converts from one form to the other.
|
|
* The former is fastest for ZZn6 arithmetic, the latter form is required for handling the second parameter
|
|
* to the pairing, which is on the quadratic twist E(Fp3)
|
|
*
|
|
* Provides high level interface to pairing functions
|
|
*
|
|
* GT=pairing(G2,G1)
|
|
*
|
|
* This is calculated on a Pairing Friendly Curve (PFC), which must first be defined.
|
|
*
|
|
* G1 is a point over the base field, and G2 is a point over an extension field of degree 3
|
|
* GT is a finite field point over the 6-th extension, where 6 is the embedding degree.
|
|
*
|
|
*/
|
|
|
|
#define MR_PAIRING_MNT
|
|
#include "pairing_3.h"
|
|
|
|
// AES_SECURITY=80 bit curve
|
|
// MNT curve parameters, x,A,B
|
|
// Thanks to Drew Sutherland for providing the MNT curve
|
|
// irreducible poly is x^6+2
|
|
static char param[]="-D285DA0CFEF02F06F812";
|
|
static char curveB[]="77479D33943B5B1F590B54258B72F316B3261D45";
|
|
|
|
void read_only_error(void)
|
|
{
|
|
cout << "Attempt to write to read-only object" << endl;
|
|
exit(0);
|
|
}
|
|
|
|
void set_frobenius_constant(ZZn2 &X)
|
|
{
|
|
Big p=get_modulus();
|
|
switch (get_mip()->pmod8)
|
|
{
|
|
case 5:
|
|
X.set((Big)0,(Big)1); // = (sqrt(-2)^(p-1)/2
|
|
break;
|
|
case 3: // = (1+sqrt(-1))^(p-1)/2
|
|
X.set((Big)1,(Big)1);
|
|
break;
|
|
case 7:
|
|
X.set((Big)2,(Big)1); // = (2+sqrt(-1))^(p-1)/2
|
|
default: break;
|
|
}
|
|
X=pow(X,(p-1)/3);
|
|
}
|
|
|
|
// Using SHA as basic hash algorithm
|
|
//
|
|
// Hash function
|
|
//
|
|
|
|
#define HASH_LEN 20
|
|
|
|
Big H1(char *string)
|
|
{ // Hash a zero-terminated string to a number < modulus
|
|
Big h,p;
|
|
char s[HASH_LEN];
|
|
int i,j;
|
|
sha sh;
|
|
|
|
shs_init(&sh);
|
|
|
|
for (i=0;;i++)
|
|
{
|
|
if (string[i]==0) break;
|
|
shs_process(&sh,string[i]);
|
|
}
|
|
shs_hash(&sh,s);
|
|
p=get_modulus();
|
|
h=1; j=0; i=1;
|
|
forever
|
|
{
|
|
h*=256;
|
|
if (j==HASH_LEN) {h+=i++; j=0;}
|
|
else h+=s[j++];
|
|
if (h>=p) break;
|
|
}
|
|
h%=p;
|
|
return h;
|
|
}
|
|
|
|
void PFC::start_hash(void)
|
|
{
|
|
shs_init(&SH);
|
|
}
|
|
|
|
Big PFC::finish_hash_to_group(void)
|
|
{
|
|
Big hash;
|
|
char s[HASH_LEN];
|
|
shs_hash(&SH,s);
|
|
hash=from_binary(HASH_LEN,s);
|
|
return hash%(*ord);
|
|
}
|
|
|
|
void PFC::add_to_hash(const GT& x)
|
|
{
|
|
ZZn6 u=x.g;
|
|
ZZn2 v;
|
|
ZZn l,h;
|
|
Big a,xx[2];
|
|
int i,j,m;
|
|
|
|
u.get(v);
|
|
v.get(l,h);
|
|
xx[0]=l; xx[1]=h;
|
|
|
|
for (i=0;i<2;i++)
|
|
{
|
|
a=xx[i];
|
|
while (a>0)
|
|
{
|
|
m=a%256;
|
|
shs_process(&SH,m);
|
|
a/=256;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
void PFC::add_to_hash(const G2& x)
|
|
{
|
|
ZZn3 X,Y;
|
|
ECn3 v=x.g;
|
|
Big a;
|
|
ZZn xx[6];
|
|
|
|
int i,m;
|
|
|
|
v.get(X,Y);
|
|
X.get(xx[0],xx[1],xx[2]);
|
|
Y.get(xx[3],xx[4],xx[5]);
|
|
for (i=0;i<6;i++)
|
|
{
|
|
a=(Big)xx[i];
|
|
while (a>0)
|
|
{
|
|
m=a%256;
|
|
shs_process(&SH,m);
|
|
a/=256;
|
|
}
|
|
}
|
|
}
|
|
|
|
void PFC::add_to_hash(const G1& x)
|
|
{
|
|
Big a,X,Y;
|
|
int i,m;
|
|
x.g.get(X,Y);
|
|
a=X;
|
|
while (a>0)
|
|
{
|
|
m=a%256;
|
|
shs_process(&SH,m);
|
|
a/=256;
|
|
}
|
|
a=Y;
|
|
while (a>0)
|
|
{
|
|
m=a%256;
|
|
shs_process(&SH,m);
|
|
a/=256;
|
|
}
|
|
}
|
|
|
|
void PFC::add_to_hash(const Big& x)
|
|
{
|
|
int m;
|
|
Big a=x;
|
|
while (a>0)
|
|
{
|
|
m=a%256;
|
|
shs_process(&SH,m);
|
|
a/=256;
|
|
}
|
|
}
|
|
|
|
|
|
void PFC::add_to_hash(char *x)
|
|
{
|
|
int i=0;
|
|
while (x[i]!=0)
|
|
{
|
|
shs_process(&SH,x[i]);
|
|
i++;
|
|
}
|
|
}
|
|
|
|
Big H2(ZZn6 y)
|
|
{ // Hash and compress an Fp6 to a big number
|
|
sha sh;
|
|
ZZn u,v,w;
|
|
ZZn2 x;
|
|
Big a,h,xx[2];
|
|
char s[HASH_LEN];
|
|
int i,j,m;
|
|
|
|
shs_init(&sh);
|
|
y.get(x);
|
|
x.get(u,v);
|
|
xx[0]=u; xx[1]=v;
|
|
|
|
for (i=0;i<2;i++)
|
|
{
|
|
a=xx[i];
|
|
while (a>0)
|
|
{
|
|
m=a%256;
|
|
shs_process(&sh,m);
|
|
a/=256;
|
|
}
|
|
}
|
|
shs_hash(&sh,s);
|
|
h=from_binary(HASH_LEN,s);
|
|
return h;
|
|
}
|
|
|
|
#ifndef MR_AFFINE_ONLY
|
|
|
|
void force(ZZn& x,ZZn& y,ZZn& z,ECn& A)
|
|
{ // A=(x,y,z)
|
|
copy(getbig(x),A.get_point()->X);
|
|
copy(getbig(y),A.get_point()->Y);
|
|
copy(getbig(z),A.get_point()->Z);
|
|
A.get_point()->marker=MR_EPOINT_GENERAL;
|
|
}
|
|
|
|
void extract(ECn &A, ZZn& x,ZZn& y,ZZn& z)
|
|
{ // (x,y,z) <- A
|
|
big t;
|
|
x=(A.get_point())->X;
|
|
y=(A.get_point())->Y;
|
|
t=(A.get_point())->Z;
|
|
if (A.get_status()!=MR_EPOINT_GENERAL) z=1;
|
|
else z=t;
|
|
}
|
|
|
|
#endif
|
|
|
|
void force(ZZn& x,ZZn& y,ECn& A)
|
|
{ // A=(x,y)
|
|
copy(getbig(x),A.get_point()->X);
|
|
copy(getbig(y),A.get_point()->Y);
|
|
A.get_point()->marker=MR_EPOINT_NORMALIZED;
|
|
}
|
|
|
|
void extract(ECn& A,ZZn& x,ZZn& y)
|
|
{ // (x,y) <- A
|
|
if (A.iszero())
|
|
{
|
|
x=0; y=0;
|
|
return;
|
|
}
|
|
x=(A.get_point())->X;
|
|
y=(A.get_point())->Y;
|
|
}
|
|
|
|
|
|
ZZn6 shuffle(const ZZn3 &first, const ZZn3 &second)
|
|
{ // shuffle from a pair ZZn3's to three ZZn2's, as required by ZZn6
|
|
ZZn6 w;
|
|
ZZn x0,x1,x2,x3,x4,x5;
|
|
ZZn2 t0,t1,t2;
|
|
first.get(x0,x2,x4);
|
|
second.get(x1,x3,x5);
|
|
t0.set(x0,x3);
|
|
t1.set(x1,x4);
|
|
t2.set(x2,x5);
|
|
w.set(t0,t1,t2);
|
|
return w;
|
|
}
|
|
|
|
void unshuffle(ZZn6 &S,ZZn3 &first,ZZn3 &second)
|
|
{ // unshuffle a ZZn6 into two ZZn3's
|
|
ZZn x0,x1,x2,x3,x4,x5;
|
|
ZZn2 t0,t1,t2;
|
|
S.get(t0,t1,t2);
|
|
t0.get(x0,x3);
|
|
t1.get(x1,x4);
|
|
t2.get(x2,x5);
|
|
first.set(x0,x2,x4);
|
|
second.set(x1,x3,x5);
|
|
}
|
|
|
|
// Calculate q*P. P(X,Y) -> P(X^p,Y^p))
|
|
|
|
void q_power_frobenius(ECn3 &S,ZZn2& X)
|
|
{
|
|
ZZn6 X1,X2,Y1,Y2;
|
|
ZZn3 Sx,Sy,T;
|
|
|
|
int qnr=get_mip()->cnr;
|
|
|
|
S.get(Sx,Sy);
|
|
|
|
// untwist
|
|
Sx=Sx/qnr;
|
|
Sy=tx(Sy);
|
|
Sy=Sy/(qnr*qnr);
|
|
|
|
X1=shuffle(Sx,(ZZn3)0); Y1=shuffle((ZZn3)0,Sy);
|
|
X1.powq(X); Y1.powq(X);
|
|
unshuffle(X1,Sx,T); unshuffle(Y1,T,Sy);
|
|
|
|
// twist
|
|
Sx=qnr*Sx;
|
|
Sy=txd(Sy*qnr*qnr);
|
|
S.set(Sx,Sy);
|
|
}
|
|
|
|
//
|
|
// Line from A to destination C. Let A=(x,y)
|
|
// Line Y-slope.X-c=0, through A, so intercept c=y-slope.x
|
|
// Line Y-slope.X-y+slope.x = (Y-y)-slope.(X-x) = 0
|
|
// Now evaluate at Q -> return (Qy-y)-slope.(Qx-x)
|
|
//
|
|
|
|
ZZn6 line(ECn3& A,ECn3& C,ECn3& B,int type,ZZn3& slope,ZZn3& ex1,ZZn3& ex2,ZZn& Px,ZZn& Py)
|
|
{
|
|
ZZn6 w;
|
|
ZZn3 d;
|
|
ZZn3 x,y;
|
|
#ifdef MR_ECN3_PROJECTIVE
|
|
ZZn3 z,z3,t;
|
|
C.getZ(z3);
|
|
d.set1(Py);
|
|
|
|
if (type==MR_ADD)
|
|
{ // exploit that B is in affine
|
|
ZZn3 x2,y2;
|
|
B.get(x2,y2);
|
|
y2*=z3; d*=z3;
|
|
w=shuffle(y2-slope*(Px+x2),d);
|
|
}
|
|
if (type==MR_DOUBLE)
|
|
{ // use extra information from point doubling
|
|
A.get(x,y,z);
|
|
w=shuffle(ex1-slope*(Px*ex2+x),d*z3*ex2);
|
|
}
|
|
#else
|
|
A.get(x,y);
|
|
d.set1(Py);
|
|
w=shuffle(y-slope*(Px+x),d);
|
|
#endif
|
|
return w;
|
|
}
|
|
|
|
//
|
|
// Add A=A+B (or A=A+A)
|
|
// Return line function value
|
|
//
|
|
|
|
ZZn6 g(ECn3& A,ECn3& B,ZZn& Px,ZZn& Py)
|
|
{
|
|
BOOL type;
|
|
ZZn3 lam,ex1,ex2;
|
|
ECn3 Q=A;
|
|
|
|
// Evaluate line from A to A+B
|
|
type=A.add(B,lam,&ex1,&ex2);
|
|
|
|
return line(Q,A,B,type,lam,ex1,ex2,Px,Py);
|
|
}
|
|
|
|
// if multiples of G2 can be precalculated, its a lot faster!
|
|
|
|
ZZn6 gp(ZZn3* ptable,int &j,ZZn& Px,ZZn& Py)
|
|
{
|
|
ZZn6 w;
|
|
ZZn3 d;
|
|
d.set1(Py);
|
|
w=shuffle(ptable[j]*Px+ptable[j+1],d);
|
|
j+=2;
|
|
return w;
|
|
}
|
|
|
|
//
|
|
// Spill precomputation on pairing to byte array
|
|
//
|
|
|
|
int PFC::spill(G2& w,char *& bytes)
|
|
{
|
|
int i,j,len,m;
|
|
int bytes_per_big=(MIRACL/8)*(get_mip()->nib-1);
|
|
|
|
ZZn a,b,c;
|
|
Big X=*x;
|
|
if (w.ptable==NULL) return 0;
|
|
|
|
m=2*(bits(X)-2+ham(X));
|
|
len=m*3*bytes_per_big;
|
|
|
|
bytes=new char[len];
|
|
for (i=j=0;i<m;i++)
|
|
{
|
|
w.ptable[i].get(a,b,c);
|
|
to_binary((Big)a,bytes_per_big,&bytes[j],TRUE);
|
|
j+=bytes_per_big;
|
|
to_binary((Big)b,bytes_per_big,&bytes[j],TRUE);
|
|
j+=bytes_per_big;
|
|
to_binary((Big)c,bytes_per_big,&bytes[j],TRUE);
|
|
j+=bytes_per_big;
|
|
}
|
|
|
|
delete [] w.ptable;
|
|
w.ptable=NULL;
|
|
return len;
|
|
}
|
|
|
|
//
|
|
// Restore precomputation on pairing to byte array
|
|
//
|
|
|
|
void PFC::restore(char * bytes,G2& w)
|
|
{
|
|
int i,j,len,m;
|
|
int bytes_per_big=(MIRACL/8)*(get_mip()->nib-1);
|
|
|
|
ZZn a,b,c;
|
|
Big X=*x;
|
|
if (w.ptable!=NULL) return;
|
|
|
|
m=2*(bits(X)-2+ham(X));
|
|
len=m*3*bytes_per_big;
|
|
|
|
w.ptable=new ZZn3[m];
|
|
for (i=j=0;i<m;i++)
|
|
{
|
|
a=from_binary(bytes_per_big,&bytes[j]);
|
|
j+=bytes_per_big;
|
|
b=from_binary(bytes_per_big,&bytes[j]);
|
|
j+=bytes_per_big;
|
|
c=from_binary(bytes_per_big,&bytes[j]);
|
|
j+=bytes_per_big;
|
|
w.ptable[i].set(a,b,c);
|
|
}
|
|
for (i=0;i<len;i++) bytes[i]=0;
|
|
|
|
delete [] bytes;
|
|
}
|
|
|
|
// precompute G2 table for pairing
|
|
|
|
int PFC::precomp_for_pairing(G2& w)
|
|
{
|
|
int i,j,nb,type,len;
|
|
ECn3 A,Q,B;
|
|
ZZn3 lam,x1,y1;
|
|
Big X=*x;
|
|
|
|
A=w.g;
|
|
A.norm();
|
|
B=A;
|
|
nb=bits(X);
|
|
j=0;
|
|
len=2*(nb-2+ham(X));
|
|
w.ptable=new ZZn3[len];
|
|
get_mip()->coord=MR_AFFINE; // switch to affine
|
|
for (i=nb-2;i>=0;i--)
|
|
{
|
|
Q=A;
|
|
// Evaluate line from A to A+B
|
|
A.add(A,lam,NULL,NULL);
|
|
Q.get(x1,y1);
|
|
w.ptable[j++]=-lam; w.ptable[j++]=y1-lam*x1;
|
|
|
|
if (bit(X,i)==1)
|
|
{
|
|
Q=A;
|
|
type=A.add(B,lam,NULL,NULL);
|
|
Q.get(x1,y1);
|
|
w.ptable[j++]=-lam; w.ptable[j++]=y1-lam*x1;
|
|
}
|
|
}
|
|
get_mip()->coord=MR_PROJECTIVE;
|
|
return len;
|
|
}
|
|
|
|
GT PFC::multi_miller(int n,G2** QQ,G1** PP)
|
|
{
|
|
GT z;
|
|
ZZn *Px,*Py;
|
|
int i,j,*k,nb;
|
|
ECn3 *Q,*A;
|
|
ECn P;
|
|
ZZn6 res;
|
|
Big X=*x;
|
|
|
|
Px=new ZZn[n];
|
|
Py=new ZZn[n];
|
|
Q=new ECn3[n];
|
|
A=new ECn3[n];
|
|
k=new int[n];
|
|
|
|
nb=bits(X);
|
|
res=1;
|
|
|
|
for (j=0;j<n;j++)
|
|
{
|
|
k[j]=0;
|
|
P=PP[j]->g; normalise(P); Q[j]=QQ[j]->g;
|
|
extract(P,Px[j],Py[j]);
|
|
Px[j]+=Px[j];
|
|
Py[j]+=Py[j];
|
|
}
|
|
|
|
for (j=0;j<n;j++)
|
|
{
|
|
#ifdef MR_ECN3_PROJECTIVE
|
|
Q[j].norm();
|
|
#endif
|
|
A[j]=Q[j];
|
|
}
|
|
|
|
for (i=nb-2;i>=0;i--)
|
|
{
|
|
res*=res;
|
|
for (j=0;j<n;j++)
|
|
{
|
|
if (QQ[j]->ptable==NULL)
|
|
res*=g(A[j],A[j],Px[j],Py[j]);
|
|
else
|
|
res*=gp(QQ[j]->ptable,k[j],Px[j],Py[j]);
|
|
}
|
|
if (bit(X,i)==1)
|
|
for (j=0;j<n;j++)
|
|
{
|
|
if (QQ[j]->ptable==NULL)
|
|
res*=g(A[j],Q[j],Px[j],Py[j]);
|
|
else
|
|
res*=gp(QQ[j]->ptable,k[j],Px[j],Py[j]);
|
|
}
|
|
if (res.iszero()) return 0;
|
|
}
|
|
|
|
delete [] k;
|
|
delete [] A;
|
|
delete [] Q;
|
|
delete [] Py;
|
|
delete [] Px;
|
|
|
|
z.g=res;
|
|
return z;
|
|
}
|
|
|
|
//
|
|
// R-ate Pairing G2 x G1 -> GT
|
|
//
|
|
// P is a point of order q in G1. Q(x,y) is a point of order q in G2.
|
|
// Note that Q is a point on the sextic twist of the curve over Fp^2, P(x,y) is a point on the
|
|
// curve over the base field Fp
|
|
//
|
|
|
|
GT PFC::miller_loop(const G2& QQ,const G1& PP)
|
|
{
|
|
GT z;
|
|
int i,j,n,nb,nbw,nzs;
|
|
ECn3 A,Q;
|
|
ECn P;
|
|
ZZn Px,Py;
|
|
BOOL precomp;
|
|
ZZn6 res;
|
|
Big X=*x;
|
|
|
|
P=PP.g; Q=QQ.g;
|
|
#ifdef MR_ECN3_PROJECTIVE
|
|
Q.norm();
|
|
#endif
|
|
precomp=FALSE;
|
|
if (QQ.ptable!=NULL) precomp=TRUE;
|
|
|
|
normalise(P);
|
|
extract(P,Px,Py);
|
|
|
|
Px+=Px; // because x^6+2 is irreducible.. simplifies line function calculation
|
|
Py+=Py;
|
|
|
|
res=1;
|
|
A=Q; // reset A
|
|
nb=bits(X);
|
|
res.mark_as_miller();
|
|
j=0;
|
|
|
|
for (i=nb-2;i>=0;i--)
|
|
{
|
|
res*=res;
|
|
if (precomp) res*=gp(QQ.ptable,j,Px,Py);
|
|
else res*=g(A,A,Px,Py);
|
|
|
|
if (bit(X,i)==1)
|
|
{
|
|
if (precomp) res*=gp(QQ.ptable,j,Px,Py);
|
|
else res*=g(A,Q,Px,Py);
|
|
}
|
|
}
|
|
|
|
z.g=res;
|
|
return z;
|
|
}
|
|
|
|
GT PFC::final_exp(const GT& z)
|
|
{
|
|
GT y;
|
|
ZZn6 w,res;
|
|
Big X=*x;
|
|
|
|
res=z.g;
|
|
|
|
w=res;
|
|
w.powq(*frob);
|
|
res*=w; // ^(p+1)
|
|
|
|
w=res;
|
|
w.powq(*frob); w.powq(*frob); w.powq(*frob);
|
|
res=w/res; // ^(p^3-1)
|
|
|
|
// exploit the clever "trick" for a half-length exponentiation!
|
|
|
|
res.mark_as_unitary();
|
|
|
|
w=res;
|
|
res.powq(*frob); // res*=res; // res=pow(res,CF);
|
|
|
|
if (X<0) res/=powu(w,-X);
|
|
else res*=powu(w,X);
|
|
|
|
y.g=res;
|
|
|
|
return y;
|
|
}
|
|
|
|
PFC::PFC(int s, csprng *rng)
|
|
{
|
|
int mod_bits,words;
|
|
if (s!=80)
|
|
{
|
|
cout << "No suitable curve available" << endl;
|
|
exit(0);
|
|
}
|
|
mod_bits=2*s;
|
|
|
|
if (mod_bits%MIRACL==0)
|
|
words=(mod_bits/MIRACL);
|
|
else
|
|
words=(mod_bits/MIRACL)+1;
|
|
|
|
#ifdef MR_SIMPLE_BASE
|
|
miracl *mip=mirsys((MIRACL/4)*words,16);
|
|
#else
|
|
miracl *mip=mirsys(words,0);
|
|
mip->IOBASE=16;
|
|
#endif
|
|
|
|
B=new Big;
|
|
x=new Big;
|
|
mod=new Big;
|
|
ord=new Big;
|
|
cof=new Big;
|
|
npoints=new Big;
|
|
trace=new Big;
|
|
frob=new ZZn2;
|
|
|
|
*B=curveB;
|
|
S=s;
|
|
*x=param;
|
|
Big X=*x;
|
|
|
|
*mod=X*X+1;
|
|
*npoints=X*X-X+1;
|
|
*trace=X+1;
|
|
*cof=X*X+X+1;
|
|
*ord=*npoints;
|
|
ecurve(-3,*B,*mod,MR_PROJECTIVE);
|
|
set_frobenius_constant(*frob);
|
|
Big sru=pow((ZZn)-2,(*mod-1)/6); // x^6+2 is irreducible
|
|
set_zzn3(-2,sru);
|
|
mip->TWIST=MR_QUADRATIC; // twisted curve E'(ZZn3)
|
|
|
|
RNG = rng;
|
|
}
|
|
|
|
PFC::~PFC()
|
|
{
|
|
delete B;
|
|
delete x;
|
|
delete mod;
|
|
delete ord;
|
|
delete cof;
|
|
delete npoints;
|
|
delete trace;
|
|
delete frob;
|
|
mirexit();
|
|
}
|
|
|
|
G1 PFC::mult(const G1& w,const Big& k)
|
|
{
|
|
G1 z;
|
|
if (w.mtable!=NULL)
|
|
{ // we have precomputed values
|
|
Big e=k;
|
|
if (k<0) e=-e;
|
|
|
|
int i,j,t=w.mtbits; //MR_ROUNDUP(2*S,WINDOW_SIZE);
|
|
j=recode(e,t,WINDOW_SIZE,t-1);
|
|
z.g=w.mtable[j];
|
|
for (i=t-2;i>=0;i--)
|
|
{
|
|
j=recode(e,t,WINDOW_SIZE,i);
|
|
z.g+=z.g;
|
|
if (j>0) z.g+=w.mtable[j];
|
|
}
|
|
if (k<0) z.g=-z.g;
|
|
}
|
|
else
|
|
{
|
|
z.g=w.g;
|
|
z.g*=k;
|
|
}
|
|
return z;
|
|
}
|
|
|
|
// GLV + Galbraith-Scott
|
|
|
|
G2 PFC::mult(const G2& w,const Big& k)
|
|
{
|
|
G2 z;
|
|
Big X=*x;
|
|
if (w.mtable!=NULL)
|
|
{ // we have precomputed values
|
|
Big e=k;
|
|
if (k<0) e=-e;
|
|
|
|
int i,j,t=w.mtbits; //MR_ROUNDUP(2*S,WINDOW_SIZE);
|
|
j=recode(e,t,WINDOW_SIZE,t-1);
|
|
z.g=w.mtable[j];
|
|
for (i=t-2;i>=0;i--)
|
|
{
|
|
j=recode(e,t,WINDOW_SIZE,i);
|
|
z.g+=z.g;
|
|
if (j>0) z.g+=w.mtable[j];
|
|
}
|
|
if (k<0) z.g=-z.g;
|
|
}
|
|
else
|
|
{
|
|
ECn3 v=w.g;
|
|
q_power_frobenius(v,*frob);
|
|
z.g=mul(v,k/X,w.g,k%X);
|
|
}
|
|
return z;
|
|
}
|
|
|
|
// GLV method + Galbraith-Scott idea
|
|
|
|
GT PFC::power(const GT& w,const Big& k)
|
|
{
|
|
GT z;
|
|
Big X=*x;
|
|
if (w.etable!=NULL)
|
|
{ // precomputation is available
|
|
Big e=k;
|
|
if (k<0) e=-e;
|
|
|
|
int i,j,t=w.etbits; //MR_ROUNDUP(2*S,WINDOW_SIZE);
|
|
j=recode(e,t,WINDOW_SIZE,t-1);
|
|
z.g=w.etable[j];
|
|
for (i=t-2;i>=0;i--)
|
|
{
|
|
j=recode(e,t,WINDOW_SIZE,i);
|
|
z.g*=z.g;
|
|
if (j>0) z.g*=w.etable[j];
|
|
}
|
|
if (k<0) z.g=inverse(z.g);
|
|
}
|
|
else
|
|
{
|
|
ZZn6 y=w.g;
|
|
y.powq(*frob);
|
|
z.g=powu(y,k/X,w.g,k%X);
|
|
}
|
|
return z;
|
|
}
|
|
|
|
// Use Scott et al. idea - http://eprint.iacr.org/2008/530.pdf
|
|
// Map to point of correct order
|
|
|
|
void map(ECn3 &S,Big x, ZZn2& X)
|
|
{ // S=Phi(2xP)+phi^2(2xP)
|
|
ZZn6 X1,X2,Y1,Y2;
|
|
ZZn3 Sx,Sy,T;
|
|
ECn3 S2;
|
|
int qnr=get_mip()->cnr;
|
|
|
|
S*=x; S+=S; // hard work done here
|
|
|
|
S.get(Sx,Sy);
|
|
|
|
// untwist
|
|
Sx=Sx/qnr;
|
|
Sy=tx(Sy);
|
|
Sy=Sy/(qnr*qnr);
|
|
|
|
X1=shuffle(Sx,(ZZn3)0); Y1=shuffle((ZZn3)0,Sy);
|
|
X1.powq(X); Y1.powq(X);
|
|
X2=X1; Y2=Y1;
|
|
X2.powq(X); Y2.powq(X);
|
|
unshuffle(X1,Sx,T); unshuffle(Y1,T,Sy);
|
|
|
|
// twist
|
|
Sx=qnr*Sx;
|
|
Sy=txd(Sy*qnr*qnr);
|
|
S.set(Sx,Sy);
|
|
unshuffle(X2,Sx,T); unshuffle(Y2,T,Sy);
|
|
|
|
//twist (again, like we did last summer...)
|
|
Sx=qnr*Sx;
|
|
Sy=txd(Sy*qnr*qnr);
|
|
S2.set(Sx,Sy);
|
|
S+=S2;
|
|
}
|
|
|
|
// random group element
|
|
|
|
void PFC::random(Big& w)
|
|
{
|
|
if (RNG==NULL) w=rand(*ord);
|
|
else w=strong_rand(RNG,*ord);
|
|
}
|
|
|
|
// random AES key
|
|
|
|
void PFC::rankey(Big& k)
|
|
{
|
|
if (RNG==NULL) k=rand(S,2);
|
|
else k=strong_rand(RNG,S,2);
|
|
}
|
|
|
|
void PFC::hash_and_map(G2& w,char *ID)
|
|
{
|
|
int i;
|
|
ZZn3 XX;
|
|
Big X=*x;
|
|
|
|
Big x0=H1(ID);
|
|
forever
|
|
{
|
|
x0+=1;
|
|
XX.set2((ZZn)x0);
|
|
if (!w.g.set(XX)) continue;
|
|
|
|
break;
|
|
}
|
|
map(w.g,X,*frob);
|
|
}
|
|
|
|
void PFC::random(G2& w)
|
|
{
|
|
int i;
|
|
ZZn3 XX;
|
|
Big X=*x;
|
|
Big x0;
|
|
|
|
if (RNG==NULL) x0=rand(*mod);
|
|
else x0=strong_rand(RNG,*mod);
|
|
forever
|
|
{
|
|
x0+=1;
|
|
XX.set2((ZZn)x0);
|
|
if (!w.g.set(XX)) continue;
|
|
|
|
break;
|
|
}
|
|
map(w.g,X,*frob);
|
|
}
|
|
|
|
void PFC::hash_and_map(G1& w,char *ID)
|
|
{
|
|
Big x0=H1(ID);
|
|
while (!w.g.set(x0,x0)) x0+=1;
|
|
}
|
|
|
|
void PFC::random(G1& w)
|
|
{
|
|
Big x0;
|
|
if (RNG==NULL) x0=rand(*mod);
|
|
else x0=strong_rand(RNG,*mod);
|
|
|
|
while (!w.g.set(x0,x0)) x0+=1;
|
|
}
|
|
|
|
Big PFC::hash_to_aes_key(const GT& w)
|
|
{
|
|
Big m=pow((Big)2,S);
|
|
return H2(w.g)%m;
|
|
}
|
|
|
|
Big PFC::hash_to_group(char *ID)
|
|
{
|
|
Big m=H1(ID);
|
|
return m%(*ord);
|
|
}
|
|
|
|
GT operator*(const GT& x,const GT& y)
|
|
{
|
|
GT z=x;
|
|
z.g*=y.g;
|
|
return z;
|
|
}
|
|
|
|
GT operator/(const GT& x,const GT& y)
|
|
{
|
|
GT z=x;
|
|
z.g/=y.g;
|
|
return z;
|
|
}
|
|
|
|
//
|
|
// spill precomputation on GT to byte array
|
|
//
|
|
|
|
int GT::spill(char *& bytes)
|
|
{
|
|
int i,j,n=(1<<WINDOW_SIZE);
|
|
int bytes_per_big=(MIRACL/8)*(get_mip()->nib-1);
|
|
int len=n*6*bytes_per_big+1;
|
|
ZZn2 a,b,c;
|
|
Big x,y;
|
|
|
|
if (etable==NULL) return 0;
|
|
|
|
bytes=new char[len];
|
|
for (i=j=0;i<n;i++)
|
|
{
|
|
etable[i].get(a,b,c);
|
|
a.get(x,y);
|
|
to_binary(x,bytes_per_big,&bytes[j],TRUE);
|
|
j+=bytes_per_big;
|
|
to_binary(y,bytes_per_big,&bytes[j],TRUE);
|
|
j+=bytes_per_big;
|
|
b.get(x,y);
|
|
to_binary(x,bytes_per_big,&bytes[j],TRUE);
|
|
j+=bytes_per_big;
|
|
to_binary(y,bytes_per_big,&bytes[j],TRUE);
|
|
j+=bytes_per_big;
|
|
c.get(x,y);
|
|
to_binary(x,bytes_per_big,&bytes[j],TRUE);
|
|
j+=bytes_per_big;
|
|
to_binary(y,bytes_per_big,&bytes[j],TRUE);
|
|
j+=bytes_per_big;
|
|
}
|
|
bytes[j]=etbits;
|
|
delete [] etable;
|
|
etable=NULL;
|
|
return len;
|
|
}
|
|
|
|
//
|
|
// restore precomputation for GT from byte array
|
|
//
|
|
|
|
void GT::restore(char *bytes)
|
|
{
|
|
int i,j,n=(1<<WINDOW_SIZE);
|
|
int bytes_per_big=(MIRACL/8)*(get_mip()->nib-1);
|
|
// int len=n*6*bytes_per_big;
|
|
ZZn2 a,b,c;
|
|
Big x,y;
|
|
if (etable!=NULL) return;
|
|
|
|
etable=new ZZn6[1<<WINDOW_SIZE];
|
|
for (i=j=0;i<n;i++)
|
|
{
|
|
x=from_binary(bytes_per_big,&bytes[j]);
|
|
j+=bytes_per_big;
|
|
y=from_binary(bytes_per_big,&bytes[j]);
|
|
j+=bytes_per_big;
|
|
a.set(x,y);
|
|
x=from_binary(bytes_per_big,&bytes[j]);
|
|
j+=bytes_per_big;
|
|
y=from_binary(bytes_per_big,&bytes[j]);
|
|
j+=bytes_per_big;
|
|
b.set(x,y);
|
|
x=from_binary(bytes_per_big,&bytes[j]);
|
|
j+=bytes_per_big;
|
|
y=from_binary(bytes_per_big,&bytes[j]);
|
|
j+=bytes_per_big;
|
|
c.set(x,y);
|
|
etable[i].set(a,b,c);
|
|
}
|
|
etbits=bytes[j];
|
|
delete [] bytes;
|
|
}
|
|
|
|
|
|
G1 operator+(const G1& x,const G1& y)
|
|
{
|
|
G1 z=x;
|
|
z.g+=y.g;
|
|
return z;
|
|
}
|
|
|
|
G1 operator-(const G1& x)
|
|
{
|
|
G1 z=x;
|
|
z.g=-z.g;
|
|
return z;
|
|
}
|
|
|
|
//
|
|
// spill precomputation on G1 to byte array
|
|
//
|
|
|
|
int G1::spill(char *& bytes)
|
|
{
|
|
int i,j,n=(1<<WINDOW_SIZE);
|
|
int bytes_per_big=(MIRACL/8)*(get_mip()->nib-1);
|
|
int len=n*2*bytes_per_big+1;
|
|
Big x,y;
|
|
|
|
if (mtable==NULL) return 0;
|
|
|
|
bytes=new char[len];
|
|
for (i=j=0;i<n;i++)
|
|
{
|
|
mtable[i].get(x,y);
|
|
to_binary(x,bytes_per_big,&bytes[j],TRUE);
|
|
j+=bytes_per_big;
|
|
to_binary(y,bytes_per_big,&bytes[j],TRUE);
|
|
j+=bytes_per_big;
|
|
}
|
|
bytes[j]=mtbits;
|
|
delete [] mtable;
|
|
mtable=NULL;
|
|
return len;
|
|
}
|
|
|
|
//
|
|
// restore precomputation for G1 from byte array
|
|
//
|
|
|
|
void G1::restore(char *bytes)
|
|
{
|
|
int i,j,n=(1<<WINDOW_SIZE);
|
|
int bytes_per_big=(MIRACL/8)*(get_mip()->nib-1);
|
|
// int len=n*2*bytes_per_big;
|
|
Big x,y;
|
|
if (mtable!=NULL) return;
|
|
|
|
mtable=new ECn[1<<WINDOW_SIZE];
|
|
for (i=j=0;i<n;i++)
|
|
{
|
|
x=from_binary(bytes_per_big,&bytes[j]);
|
|
j+=bytes_per_big;
|
|
y=from_binary(bytes_per_big,&bytes[j]);
|
|
j+=bytes_per_big;
|
|
mtable[i].set(x,y);
|
|
}
|
|
mtbits=bytes[j];
|
|
delete [] bytes;
|
|
}
|
|
|
|
G2 operator+(const G2& x,const G2& y)
|
|
{
|
|
G2 z=x;
|
|
y.g.norm();
|
|
z.g+=y.g;
|
|
return z;
|
|
}
|
|
|
|
G2 operator-(const G2& x)
|
|
{
|
|
G2 z=x;
|
|
z.g=-z.g;
|
|
return z;
|
|
}
|
|
|
|
//
|
|
// spill precomputation on G2 to byte array
|
|
//
|
|
|
|
int G2::spill(char *& bytes)
|
|
{
|
|
int i,j,n=(1<<WINDOW_SIZE);
|
|
int bytes_per_big=(MIRACL/8)*(get_mip()->nib-1);
|
|
int len=n*6*bytes_per_big+1;
|
|
ZZn3 x,y;
|
|
ZZn a,b,c;
|
|
|
|
if (mtable==NULL) return 0;
|
|
|
|
bytes=new char[len];
|
|
for (i=j=0;i<n;i++)
|
|
{
|
|
mtable[i].get(x,y);
|
|
x.get(a,b,c);
|
|
to_binary((Big)a,bytes_per_big,&bytes[j],TRUE);
|
|
j+=bytes_per_big;
|
|
to_binary((Big)b,bytes_per_big,&bytes[j],TRUE);
|
|
j+=bytes_per_big;
|
|
to_binary((Big)c,bytes_per_big,&bytes[j],TRUE);
|
|
j+=bytes_per_big;
|
|
y.get(a,b,c);
|
|
to_binary((Big)a,bytes_per_big,&bytes[j],TRUE);
|
|
j+=bytes_per_big;
|
|
to_binary((Big)b,bytes_per_big,&bytes[j],TRUE);
|
|
j+=bytes_per_big;
|
|
to_binary((Big)c,bytes_per_big,&bytes[j],TRUE);
|
|
j+=bytes_per_big;
|
|
}
|
|
bytes[j]=mtbits;
|
|
delete [] mtable;
|
|
mtable=NULL;
|
|
return len;
|
|
}
|
|
|
|
//
|
|
// restore precomputation for G2 from byte array
|
|
//
|
|
|
|
void G2::restore(char *bytes)
|
|
{
|
|
int i,j,n=(1<<WINDOW_SIZE);
|
|
int bytes_per_big=(MIRACL/8)*(get_mip()->nib-1);
|
|
// int len=n*6*bytes_per_big;
|
|
ZZn3 x,y;
|
|
ZZn a,b,c;
|
|
if (mtable!=NULL) return;
|
|
|
|
mtable=new ECn3[1<<WINDOW_SIZE];
|
|
for (i=j=0;i<n;i++)
|
|
{
|
|
a=from_binary(bytes_per_big,&bytes[j]);
|
|
j+=bytes_per_big;
|
|
b=from_binary(bytes_per_big,&bytes[j]);
|
|
j+=bytes_per_big;
|
|
c=from_binary(bytes_per_big,&bytes[j]);
|
|
j+=bytes_per_big;
|
|
x.set(a,b,c);
|
|
a=from_binary(bytes_per_big,&bytes[j]);
|
|
j+=bytes_per_big;
|
|
b=from_binary(bytes_per_big,&bytes[j]);
|
|
j+=bytes_per_big;
|
|
c=from_binary(bytes_per_big,&bytes[j]);
|
|
j+=bytes_per_big;
|
|
y.set(a,b,c);
|
|
mtable[i].set(x,y);
|
|
}
|
|
mtbits=bytes[j];
|
|
delete [] bytes;
|
|
}
|
|
|
|
BOOL PFC::member(const GT& z)
|
|
{
|
|
ZZn6 r=z.g;
|
|
ZZn6 w=z.g;
|
|
Big X=*x;
|
|
if (!r.is_unitary()) return FALSE;
|
|
if (r*conj(r)!=(ZZn6)1) return FALSE; // not unitary
|
|
w.powq(*frob);
|
|
if (X<0) r=powu(inverse(r),-X);
|
|
else r=powu(r,X);
|
|
if (r==w) return TRUE;
|
|
return FALSE;
|
|
}
|
|
|
|
GT PFC::pairing(const G2& x,const G1& y)
|
|
{
|
|
GT z;
|
|
z=miller_loop(x,y);
|
|
z=final_exp(z);
|
|
return z;
|
|
}
|
|
|
|
GT PFC::multi_pairing(int n,G2 **y,G1 **x)
|
|
{
|
|
GT z;
|
|
z=multi_miller(n,y,x);
|
|
z=final_exp(z);
|
|
return z;
|
|
|
|
}
|
|
|
|
int PFC::precomp_for_mult(G1& w,BOOL small)
|
|
{
|
|
ECn v=w.g;
|
|
int i,j,k,bp,is,t;
|
|
if (small) t=MR_ROUNDUP(2*S,WINDOW_SIZE);
|
|
else t=MR_ROUNDUP(bits(*ord),WINDOW_SIZE);
|
|
w.mtable=new ECn[1<<WINDOW_SIZE];
|
|
w.mtable[1]=v;
|
|
w.mtbits=t;
|
|
for (j=0;j<t;j++)
|
|
v+=v;
|
|
k=1;
|
|
for (i=2;i<(1<<WINDOW_SIZE);i++)
|
|
{
|
|
if (i==(1<<k))
|
|
{
|
|
k++;
|
|
normalise(v);
|
|
w.mtable[i]=v;
|
|
for (j=0;j<t;j++)
|
|
v+=v;
|
|
continue;
|
|
}
|
|
bp=1;
|
|
for (j=0;j<k;j++)
|
|
{
|
|
if (i&bp)
|
|
{
|
|
is=1<<j;
|
|
w.mtable[i]+=w.mtable[is];
|
|
}
|
|
bp<<=1;
|
|
}
|
|
normalise(w.mtable[i]);
|
|
}
|
|
return (1<<WINDOW_SIZE);
|
|
}
|
|
|
|
int PFC::precomp_for_mult(G2& w,BOOL small)
|
|
{
|
|
ECn3 v;
|
|
|
|
ZZn3 x,y;
|
|
int i,j,k,bp,is,t;
|
|
if (small) t=MR_ROUNDUP(2*S,WINDOW_SIZE);
|
|
else t=MR_ROUNDUP(bits(*ord),WINDOW_SIZE);
|
|
w.g.norm();
|
|
v=w.g;
|
|
w.mtable=new ECn3[1<<WINDOW_SIZE];
|
|
v.norm();
|
|
w.mtable[1]=v;
|
|
w.mtbits=t;
|
|
for (j=0;j<t;j++)
|
|
v+=v;
|
|
k=1;
|
|
|
|
for (i=2;i<(1<<WINDOW_SIZE);i++)
|
|
{
|
|
if (i==(1<<k))
|
|
{
|
|
k++;
|
|
v.norm();
|
|
w.mtable[i]=v;
|
|
for (j=0;j<t;j++)
|
|
v+=v;
|
|
continue;
|
|
}
|
|
bp=1;
|
|
for (j=0;j<k;j++)
|
|
{
|
|
if (i&bp)
|
|
{
|
|
is=1<<j;
|
|
w.mtable[i]+=w.mtable[is];
|
|
}
|
|
bp<<=1;
|
|
}
|
|
w.mtable[i].norm();
|
|
}
|
|
return (1<<WINDOW_SIZE);
|
|
}
|
|
|
|
int PFC::precomp_for_power(GT& w,BOOL small)
|
|
{
|
|
ZZn6 v=w.g;
|
|
int i,j,k,bp,is,t;
|
|
if (small) t=MR_ROUNDUP(2*S,WINDOW_SIZE);
|
|
else t=MR_ROUNDUP(bits(*ord),WINDOW_SIZE);
|
|
w.etable=new ZZn6[1<<WINDOW_SIZE];
|
|
w.etable[0]=1;
|
|
w.etable[1]=v;
|
|
w.etbits=t;
|
|
for (j=0;j<t;j++)
|
|
v*=v;
|
|
k=1;
|
|
|
|
for (i=2;i<(1<<WINDOW_SIZE);i++)
|
|
{
|
|
if (i==(1<<k))
|
|
{
|
|
k++;
|
|
w.etable[i]=v;
|
|
for (j=0;j<t;j++)
|
|
v*=v;
|
|
continue;
|
|
}
|
|
bp=1;
|
|
w.etable[i]=1;
|
|
for (j=0;j<k;j++)
|
|
{
|
|
if (i&bp)
|
|
{
|
|
is=1<<j;
|
|
w.etable[i]*=w.etable[is];
|
|
}
|
|
bp<<=1;
|
|
}
|
|
}
|
|
return (1<<WINDOW_SIZE);
|
|
}
|