KGC_TEST/miracl/source/curve/pairing/zzn12.cpp

337 lines
8.0 KiB
C++

/***************************************************************************
*
Copyright 2013 CertiVox UK Ltd. *
*
This file is part of CertiVox MIRACL Crypto SDK. *
*
The CertiVox MIRACL Crypto SDK provides developers with an *
extensive and efficient set of cryptographic functions. *
For further information about its features and functionalities please *
refer to http://www.certivox.com *
*
* The CertiVox MIRACL Crypto SDK is free software: you can *
redistribute it and/or modify it under the terms of the *
GNU Affero General Public License as published by the *
Free Software Foundation, either version 3 of the License, *
or (at your option) any later version. *
*
* The CertiVox MIRACL Crypto SDK is distributed in the hope *
that it will be useful, but WITHOUT ANY WARRANTY; without even the *
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *
See the GNU Affero General Public License for more details. *
*
* You should have received a copy of the GNU Affero General Public *
License along with CertiVox MIRACL Crypto SDK. *
If not, see <http://www.gnu.org/licenses/>. *
*
You can be released from the requirements of the license by purchasing *
a commercial license. Buying such a license is mandatory as soon as you *
develop commercial activities involving the CertiVox MIRACL Crypto SDK *
without disclosing the source code of your own applications, or shipping *
the CertiVox MIRACL Crypto SDK with a closed source product. *
*
***************************************************************************/
/*
* MIRACL C++ Implementation file zzn12.cpp
*
* AUTHOR : M. Scott
*
* PURPOSE : Implementation of class ZZn12 (Arithmetic over n^12)
*
* WARNING: This class has been cobbled together for a specific use with
* the MIRACL library. It is not complete, and may not work in other
* applications
*
* NOTE: - The irreducible polynomial is assumed to be of the form
* x^6-i, where i is
* 1+sqrt(-1) if p=3 mod 8
* or sqrt(-2) if p=5 mod 8
* or sqrt(2+sqrt(-1)), for p=7 mod 8 and p=2,3 mod 5
*
*/
#include "zzn12.h"
using namespace std;
// Frobenius...
ZZn12& ZZn12::powq(const ZZn2& X)
{
ZZn2 W=X*X;
BOOL ku=unitary;
a.powq(W); b.powq(W);
b*=X;
unitary=ku;
return *this;
}
void ZZn12::get(ZZn6 &x,ZZn6 &y) const
{x=a; y=b; }
void ZZn12::get(ZZn6& x) const
{x=a; }
ZZn12& ZZn12::operator*=(const ZZn12& x)
{
if (&x==this)
{
/* See Stam & Lenstra, "Efficient subgroup exponentiation in Quadratic .. Extensions", CHES 2002 */
if (unitary)
{
ZZn6 t=b; t*=t;
b+=a; b*=b;
b-=t;
a=tx(t);
b-=a;
a+=a; a+=one();
b-=one();
// cout << "in here" << endl;
}
else
{
ZZn6 t=a; t+=b;
ZZn6 t2=a; t2+=tx(b);
t*=t2;
b*=a;
t-=b;
t-=tx(b);
b+=b;
a=t;
}
}
else
{ // Karatsuba multiplication
ZZn6 ac=a; ac*=x.a;
ZZn6 bd=b; bd*=x.b;
ZZn6 t=x.a; t+=x.b;
b+=a; b*=t; b-=ac; b-=bd;
a=ac; a+=tx(bd);
if (!x.unitary) unitary=FALSE;
}
return *this;
}
ZZn12 conj(const ZZn12& x)
{
ZZn12 u=x;
u.conj();
return u;
}
ZZn12 inverse(const ZZn12 &w)
{
ZZn12 y=conj(w);
if (w.unitary) return y;
ZZn6 u=w.a;
ZZn6 v=w.b;
u*=u;
v*=v;
u-=tx(v);
u=inverse(u);
y*=u;
return y;
}
ZZn12& ZZn12::operator/=(const ZZn12& x)
{ // inversion
*this *= inverse(x);
if (!x.unitary) unitary=FALSE;
return *this;
}
ZZn12& ZZn12::operator/=(const ZZn6& x)
{ // inversion
*this *= inverse(x);
unitary=FALSE;
return *this;
}
ZZn12 operator+(const ZZn12& x,const ZZn12& y)
{ZZn12 w=x; w+=y; return w;}
ZZn12 operator+(const ZZn12& x,const ZZn6& y)
{ZZn12 w=x; w+=y; return w; } //
ZZn12 operator-(const ZZn12& x,const ZZn12& y)
{ZZn12 w=x; w-=y; return w; }
ZZn12 operator-(const ZZn12& x,const ZZn6& y)
{ZZn12 w=x; w-=y; return w; } //
ZZn12 operator-(const ZZn12& x)
{ZZn12 w; w.a=-x.a; w.b=-x.b; w.unitary=FALSE; return w; }
ZZn12 operator*(const ZZn12& x,const ZZn12& y)
{
ZZn12 w=x;
if (&x==&y) w*=w;
else w*=y;
return w;
}
ZZn12 operator*(const ZZn12& x,const ZZn6& y)
{ZZn12 w=x; w*=y; return w;} //
ZZn12 operator*(const ZZn6& y,const ZZn12& x)
{ZZn12 w=x; w*=y; return w;} //
ZZn12 operator*(const ZZn12& x,int y)
{ZZn12 w=x; w*=y; return w;}
ZZn12 operator*(int y,const ZZn12& x)
{ZZn12 w=x; w*=y; return w;}
ZZn12 operator/(const ZZn12& x,const ZZn12& y)
{ZZn12 w=x; w/=y; return w;}
ZZn12 operator/(const ZZn12& x,const ZZn6& y)
{ZZn12 w=x; ZZn6 j=inverse(y); w.a*=j; w.b*=j; w.unitary=FALSE; return w;} //
#ifndef MR_NO_RAND
ZZn12 randn12(void)
{ZZn12 w; w.a=randn6(); w.b=randn6(); w.unitary=FALSE; return w;}
#endif
#ifndef MR_NO_STANDARD_IO
ostream& operator<<(ostream& s,ZZn12& b)
{
int i;
ZZn6 x,y;
b.get(x,y);
s << "[" << x << "," << y << "]";
return s;
}
#endif
// Left to right method - with windows
ZZn12 pow(const ZZn12* t,const ZZn12& x,const Big& k)
{
int i,j,nb,n,nbw,nzs;
ZZn12 u=x;
if (k==0) return (ZZn12)one();
if (k==1) return u;
nb=bits(k);
if (nb>1) for (i=nb-2;i>=0;)
{
n=window(k,i,&nbw,&nzs,5);
for (j=0;j<nbw;j++) u*=u;
if (n>0) u*=t[n/2];
i-=nbw;
if (nzs)
{
for (j=0;j<nzs;j++) u*=u;
i-=nzs;
}
}
return u;
}
void precompute(const ZZn12& x,ZZn12* t)
{
int i;
ZZn12 u2,u=x;
u2=(u*u);
t[0]=u;
for (i=1;i<16;i++)
t[i]=u2*t[i-1];
}
/*
ZZn12 pow(const ZZn12& x,const Big& k)
{
ZZn12 u,t[16];
if (k==0) return (ZZn12)one();
u=x;
if (k==1) return u;
//
// Prepare table for windowing
//
precompute(u,t);
return pow(t,u,k);
}
*/
// If k is low Hamming weight this will be just as good..
ZZn12 pow(const ZZn12& x,const Big& k)
{
int i,j,nb,n;
ZZn12 u=x;
Big e=k;
BOOL invert_it=FALSE;
if (e==0) return (ZZn12)one();
if (e<0)
{
e=-e;
invert_it=TRUE;
}
nb=bits(e);
if (nb>1) for (i=nb-2;i>=0;i--)
{
u*=u;
if (bit(e,i)) u*=x;
}
if (invert_it) u=inverse(u);
return u;
}
// standard MIRACL multi-exponentiation
ZZn12 pow(int n,const ZZn12* x,const Big* b)
{
int k,j,i,m,nb,ea;
ZZn12 *G;
ZZn12 r;
m=1<<n;
G=new ZZn12[m];
// precomputation
for (i=0,k=1;i<n;i++)
{
for (j=0; j < (1<<i) ;j++)
{
if (j==0) G[k]=x[i];
else G[k]=G[j]*x[i];
k++;
}
}
nb=0;
for (j=0;j<n;j++)
if ((k=bits(b[j]))>nb) nb=k;
r=1;
for (i=nb-1;i>=0;i--)
{
ea=0;
k=1;
for (j=0;j<n;j++)
{
if (bit(b[j],i)) ea+=k;
k<<=1;
}
r*=r;
if (ea!=0) r*=G[ea];
}
delete [] G;
return r;
}