KGC_TEST/miracl/source/curve/pairing/zzn8.cpp

471 lines
9.8 KiB
C++

/***************************************************************************
*
Copyright 2013 CertiVox UK Ltd. *
*
This file is part of CertiVox MIRACL Crypto SDK. *
*
The CertiVox MIRACL Crypto SDK provides developers with an *
extensive and efficient set of cryptographic functions. *
For further information about its features and functionalities please *
refer to http://www.certivox.com *
*
* The CertiVox MIRACL Crypto SDK is free software: you can *
redistribute it and/or modify it under the terms of the *
GNU Affero General Public License as published by the *
Free Software Foundation, either version 3 of the License, *
or (at your option) any later version. *
*
* The CertiVox MIRACL Crypto SDK is distributed in the hope *
that it will be useful, but WITHOUT ANY WARRANTY; without even the *
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *
See the GNU Affero General Public License for more details. *
*
* You should have received a copy of the GNU Affero General Public *
License along with CertiVox MIRACL Crypto SDK. *
If not, see <http://www.gnu.org/licenses/>. *
*
You can be released from the requirements of the license by purchasing *
a commercial license. Buying such a license is mandatory as soon as you *
develop commercial activities involving the CertiVox MIRACL Crypto SDK *
without disclosing the source code of your own applications, or shipping *
the CertiVox MIRACL Crypto SDK with a closed source product. *
*
***************************************************************************/
/*
* MIRACL C++ Implementation file zzn8.cpp
*
* AUTHOR : M. Scott
*
* PURPOSE : Implementation of class ZZn8 (Arithmetic over n^8)
*
* WARNING: This class has been cobbled together for a specific use with
* the MIRACL library. It is not complete, and may not work in other
* applications
*
*/
#include "zzn8.h"
using namespace std;
// This will now work with p=1 mod 4 or p=3 mod 4
// In the later case an adjustment is needed
ZZn8& ZZn8::powq(const ZZn2& X)
{ // Fr is "Frobenius root"
ZZn2 XX=X*X; // square it to get Frobenius constant for ZZn4
if ((get_mip()->pmod8)%4==3) XX=txx(XX);
a.powq(XX);
b.powq(XX);
b*=X;
if ((get_mip()->pmod8)%4==3) b=tx(b);
return *this;
}
void ZZn8::get(ZZn4& x,ZZn4& y) const
{x=a; y=b;}
void ZZn8::get(ZZn4& x) const
{x=a; }
ZZn8& ZZn8::operator*=(const ZZn8& x)
{ // optimized to reduce constructor/destructor calls
if (&x==this)
{
/* See Stam & Lenstra, "Efficient subgroup exponentiation in Quadratic .. Extensions", CHES 2002 */
if (unitary)
{
ZZn4 t=b; t*=t;
b+=a; b*=b;
b-=t;
a=tx(t);
b-=a;
a+=a; a+=one();
b-=one();
// cout << "in here" << endl;
}
else
{
ZZn4 t=a; t+=b;
ZZn4 t2=a; t2+=tx(b);
t*=t2;
b*=a;
t-=b;
t-=tx(b);
b+=b;
a=t;
}
}
else
{
ZZn4 ac=a; ac*=x.a;
ZZn4 bd=b; bd*=x.b;
ZZn4 t=x.a; t+=x.b;
b+=a; b*=t; b-=ac; b-=bd;
a=ac; a+=tx(bd);
if (!x.unitary) unitary=FALSE;
}
return *this;
}
ZZn8& ZZn8::operator/=(const ZZn4& x)
{
*this*=inverse(x);
unitary=FALSE;
return *this;
}
ZZn8& ZZn8::operator/=(const ZZn& x)
{
ZZn t=(ZZn)1/x;
a*=t;
b*=t;
unitary=FALSE;
return *this;
}
ZZn8& ZZn8::operator/=(int i)
{
ZZn t=(ZZn)1/i;
a*=t;
b*=t;
unitary=FALSE;
return *this;
}
ZZn8& ZZn8::operator/=(const ZZn8& x)
{
*this*=inverse(x);
if (!x.unitary) unitary=FALSE;
return *this;
}
ZZn8 inverse(const ZZn8& w)
{
ZZn8 y=conj(w);
if (w.unitary) return y;
ZZn4 u=w.a;
ZZn4 v=w.b;
u*=u;
v*=v;
u-=tx(v);
u=inverse(u);
y*=u;
return y;
}
ZZn8 operator+(const ZZn8& x,const ZZn8& y)
{ZZn8 w=x; w+=y; return w; }
ZZn8 operator+(const ZZn8& x,const ZZn4& y)
{ZZn8 w=x; w+=y; return w; }
ZZn8 operator+(const ZZn8& x,const ZZn& y)
{ZZn8 w=x; w+=y; return w; }
ZZn8 operator-(const ZZn8& x,const ZZn8& y)
{ZZn8 w=x; w-=y; return w; }
ZZn8 operator-(const ZZn8& x,const ZZn4& y)
{ZZn8 w=x; w-=y; return w; }
ZZn8 operator-(const ZZn8& x,const ZZn& y)
{ZZn8 w=x; w-=y; return w; }
ZZn8 operator-(const ZZn8& x)
{ZZn8 w; w.a=-x.a; w.b=-x.b; w.unitary=FALSE; return w; }
ZZn8 operator*(const ZZn8& x,const ZZn8& y)
{
ZZn8 w=x;
if (&x==&y) w*=w;
else w*=y;
return w;
}
ZZn8 operator*(const ZZn8& x,const ZZn4& y)
{ZZn8 w=x; w*=y; return w;}
ZZn8 operator*(const ZZn8& x,const ZZn& y)
{ZZn8 w=x; w*=y; return w;}
ZZn8 operator*(const ZZn4& y,const ZZn8& x)
{ZZn8 w=x; w*=y; return w;}
ZZn8 operator*(const ZZn& y,const ZZn8& x)
{ZZn8 w=x; w*=y; return w;}
ZZn8 operator*(const ZZn8& x,int y)
{ZZn8 w=x; w*=y; return w;}
ZZn8 operator*(int y,const ZZn8& x)
{ZZn8 w=x; w*=y; return w;}
ZZn8 operator/(const ZZn8& x,const ZZn8& y)
{ZZn8 w=x; w/=y; return w;}
ZZn8 operator/(const ZZn8& x,const ZZn4& y)
{ZZn8 w=x; w/=y; return w;}
ZZn8 operator/(const ZZn8& x,const ZZn& y)
{ZZn8 w=x; w/=y; return w;}
ZZn8 operator/(const ZZn8& x,int i)
{ZZn8 w=x; w/=i; return w;}
#ifndef MR_NO_RAND
ZZn8 randn8(void)
{ZZn8 w; w.a=randn4(); w.b=randn4(); w.unitary=FALSE; return w;}
#endif
ZZn8 rhs(const ZZn8& x)
{
ZZn8 w,A,B;
miracl *mip=get_mip();
int twist=mip->TWIST;
w=x*x*x;
A=(ZZn8)getA(); B=(ZZn8)getB();
if (twist)
{
if (twist==MR_QUARTIC_M)
{
w+=tx(A)*x;
}
if (twist==MR_QUARTIC_D)
{
w+=txd(A)*x;
}
if (twist==MR_SEXTIC_M)
{
w+=tx(B);
}
if (twist==MR_SEXTIC_D)
{
w+=txd(B);
}
if (twist==MR_QUADRATIC)
{
w+=tx(tx(A))*x+tx(tx(tx(B)));
}
}
else
{
w+=A*x+B;
}
return w;
}
BOOL qr(const ZZn8& x)
{
ZZn4 a,s;
int qnr=get_mip()->qnr;
if (x.iszero()) return TRUE;
if (x.b.iszero()) return TRUE;
s=x.b; s*=s;
a=x.a; a*=a; a-=tx(s);
if (!qr(a)) return FALSE;
return TRUE;
/*
s=sqrt(a);
if (qr((x.a+s)/2) || qr((x.a-s)/2)) return TRUE;
return FALSE;
*/
}
ZZn8 sqrt(const ZZn8& x)
{
// sqrt(a+xb) = sqrt(a+sqrt(a*a-n*b*b)/2)+x.b/(2*sqrt(a+sqrt(a*a-n*b*b)/2))
// where x*x=n
ZZn8 w;
ZZn4 a,s;
if (x.iszero()) return w;
if (x.b.iszero())
{
a=x.a;
if (qr(a))
{
s=sqrt(a);
w.a=s; w.b=0;
}
else
{
s=sqrt(txd(a));
w.a=0; w.b=s;
}
return w;
}
s=x.b; s*=s;
a=x.a; a*=a; a-=tx(s);
s=sqrt(a);
if (s.iszero()) return w;
if (qr((x.a+s)/2))
{
a=sqrt((x.a+s)/2);
}
else
{
a=sqrt((x.a-s)/2);
if (a.iszero()) return w;
}
w.a=a;
w.b=x.b/(2*a);
return w;
}
ZZn8 conj(const ZZn8& x)
{
ZZn8 u=x;
u.conj();
return u;
}
ZZn8 tx(const ZZn8& x)
{
ZZn4 t=tx(x.b);
ZZn8 u(t,x.a);
return u;
}
ZZn8 txd(const ZZn8& x)
{
ZZn4 u,v;
x.get(u,v);
u=txd(u);
ZZn8 w(v,u);
return w;
}
ZZn8 tx2(const ZZn8& x)
{
ZZn8 u(tx(x.a),tx(x.b));
return u;
}
// regular ZZn8 powering - but see powl function in zzn4.h
ZZn8 pow(const ZZn8& x,const Big& k)
{
int i,j,nb,n,nbw,nzs;
ZZn8 u,u2,t[16];
if (k==0) return (ZZn8)1;
u=x;
if (k==1) return u;
//
// Prepare table for windowing
//
u2=(u*u);
t[0]=u;
for (i=1;i<16;i++)
t[i]=u2*t[i-1];
// Left to right method - with windows
nb=bits(k);
if (nb>1) for (i=nb-2;i>=0;)
{
n=window(k,i,&nbw,&nzs,5);
for (j=0;j<nbw;j++) u*=u;
if (n>0) u*=t[n/2];
i-=nbw;
if (nzs)
{
for (j=0;j<nzs;j++) u*=u;
i-=nzs;
}
}
return u;
}
// standard MIRACL multi-exponentiation
ZZn8 pow(int n,const ZZn8* x,const Big* b)
{
int k,j,i,m,nb,ea;
ZZn8 *G;
ZZn8 r;
m=1<<n;
G=new ZZn8[m];
for (i=0,k=1;i<n;i++)
{
for (j=0; j < (1<<i) ;j++)
{
if (j==0) G[k]=x[i];
else G[k]=G[j]*x[i];
k++;
}
}
nb=0;
for (j=0;j<n;j++)
if ((k=bits(b[j]))>nb) nb=k;
r=1;
for (i=nb-1;i>=0;i--)
{
ea=0;
k=1;
for (j=0;j<n;j++)
{
if (bit(b[j],i)) ea+=k;
k<<=1;
}
r*=r;
if (ea!=0) r*=G[ea];
}
delete [] G;
return r;
}
ZZn8 powl(const ZZn8& x,const Big& k)
{
ZZn8 w8,w9,two,y;
int i,nb;
two=(ZZn)2;
y=two*x;
if (k==0) return (ZZn8)two;
if (k==1) return y;
w8=two;
w9=y;
nb=bits(k);
for (i=nb-1;i>=0;i--)
{
if (bit(k,i))
{
w8*=w9; w8-=y; w9*=w9; w9-=two;
}
else
{
w9*=w8; w9-=y; w8*=w8; w8-=two;
}
}
return (w8/2);
}
#ifndef MR_NO_STANDARD_IO
ostream& operator<<(ostream& s,const ZZn8& xx)
{
ZZn8 b=xx;
ZZn4 x,y;
b.get(x,y);
s << "[" << x << "," << y << "]";
return s;
}
#endif