119 lines
4.4 KiB
C++
119 lines
4.4 KiB
C++
|
|
/***************************************************************************
|
|
*
|
|
Copyright 2013 CertiVox UK Ltd. *
|
|
*
|
|
This file is part of CertiVox MIRACL Crypto SDK. *
|
|
*
|
|
The CertiVox MIRACL Crypto SDK provides developers with an *
|
|
extensive and efficient set of cryptographic functions. *
|
|
For further information about its features and functionalities please *
|
|
refer to http://www.certivox.com *
|
|
*
|
|
* The CertiVox MIRACL Crypto SDK is free software: you can *
|
|
redistribute it and/or modify it under the terms of the *
|
|
GNU Affero General Public License as published by the *
|
|
Free Software Foundation, either version 3 of the License, *
|
|
or (at your option) any later version. *
|
|
*
|
|
* The CertiVox MIRACL Crypto SDK is distributed in the hope *
|
|
that it will be useful, but WITHOUT ANY WARRANTY; without even the *
|
|
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *
|
|
See the GNU Affero General Public License for more details. *
|
|
*
|
|
* You should have received a copy of the GNU Affero General Public *
|
|
License along with CertiVox MIRACL Crypto SDK. *
|
|
If not, see <http://www.gnu.org/licenses/>. *
|
|
*
|
|
You can be released from the requirements of the license by purchasing *
|
|
a commercial license. Buying such a license is mandatory as soon as you *
|
|
develop commercial activities involving the CertiVox MIRACL Crypto SDK *
|
|
without disclosing the source code of your own applications, or shipping *
|
|
the CertiVox MIRACL Crypto SDK with a closed source product. *
|
|
*
|
|
***************************************************************************/
|
|
/*
|
|
* MIRACL C++ functions gf2m.cpp
|
|
*
|
|
* AUTHOR : M. Scott
|
|
*
|
|
* PURPOSE : Implementation of class GF2m
|
|
*
|
|
* NOTE: : Must be used in conjunction with big.h and big.cpp
|
|
*
|
|
*/
|
|
|
|
#include "gf2m.h"
|
|
|
|
|
|
GF2m square(const GF2m& b) {GF2m r=b; modsquare2(r.fn,r.fn); return r;}
|
|
|
|
GF2m inverse(const GF2m& b) {GF2m r=b; inverse2(r.fn,r.fn); return r;}
|
|
|
|
BOOL GF2m::iszero() const
|
|
{ if (size(fn)==0) return TRUE; else return FALSE; }
|
|
|
|
BOOL GF2m::isone() const
|
|
{ if (size(fn)==1) return TRUE; else return FALSE; }
|
|
|
|
BOOL modulo(int m,int a,int b,int c,BOOL check) {return prepare_basis(m,a,b,c,check);}
|
|
|
|
GF2m& GF2m::operator/=(const GF2m& b)
|
|
{ GF2m z=b; inverse2(z.fn,z.fn); modmult2(fn,z.fn,fn); return *this;}
|
|
#ifndef MR_NO_RAND
|
|
GF2m random2(void)
|
|
{GF2m z; rand2(z.fn); return z;}
|
|
#endif
|
|
GF2m operator+(const GF2m& b1,const GF2m& b2)
|
|
{GF2m abb=b1; abb+=b2; return abb;}
|
|
|
|
GF2m operator+(const GF2m& b1,int b2)
|
|
{GF2m abb=b1; abb+=b2; return abb;}
|
|
|
|
GF2m operator*(const GF2m& b1,const GF2m& b2)
|
|
{
|
|
GF2m abb=b1;
|
|
if (&b1==&b2)
|
|
abb*=abb;
|
|
else
|
|
abb*=b2;
|
|
return abb;
|
|
}
|
|
|
|
GF2m operator/(const GF2m& b1,const GF2m& b2)
|
|
{GF2m abb; inverse2(b2.fn,abb.fn); modmult2(b1.fn,abb.fn,abb.fn); return abb;}
|
|
|
|
#ifndef MR_STATIC
|
|
GF2m pow(const GF2m& b,int m)
|
|
{GF2m z; power2(b.fn,m,z.fn); return z;}
|
|
#endif
|
|
|
|
GF2m sqrt(const GF2m& b)
|
|
{GF2m z; sqroot2(b.fn,z.fn); return z;}
|
|
|
|
GF2m halftrace(const GF2m& b)
|
|
{GF2m z; halftrace2(b.fn,z.fn); return z;}
|
|
|
|
GF2m quad(const GF2m& b)
|
|
{GF2m z; if (!quad2(b.fn,z.fn)) zero(z.fn); return z;}
|
|
|
|
GF2m gcd(const GF2m& b1,const GF2m& b2)
|
|
{GF2m g; gcd2(b1.fn,b2.fn,g.fn); return g;}
|
|
|
|
void kar2x2(const GF2m *x,const GF2m *y,GF2m *z)
|
|
{
|
|
z[0]=x[0]*y[0];
|
|
z[2]=x[1]*y[1];
|
|
z[1]=(x[0]+x[1])*(y[0]+y[1]);
|
|
}
|
|
|
|
void kar3x3(const GF2m *x,const GF2m *y,GF2m *z)
|
|
{
|
|
z[0]=x[0]*y[0];
|
|
z[2]=x[1]*y[1];
|
|
z[4]=x[2]*y[2];
|
|
z[1]= (x[0]+x[1])*(y[0]+y[1])+z[2]+z[0];
|
|
z[3]= (x[1]+x[2])*(y[1]+y[2])+z[2]+z[4];
|
|
z[2]+=(x[0]+x[2])*(y[0]+y[2])+z[0]+z[4];
|
|
}
|