KGC_TEST/miracl/source/mrcore.c

2293 lines
53 KiB
C

/***************************************************************************
*
Copyright 2013 CertiVox UK Ltd. *
*
This file is part of CertiVox MIRACL Crypto SDK. *
*
The CertiVox MIRACL Crypto SDK provides developers with an *
extensive and efficient set of cryptographic functions. *
For further information about its features and functionalities please *
refer to http://www.certivox.com *
*
* The CertiVox MIRACL Crypto SDK is free software: you can *
redistribute it and/or modify it under the terms of the *
GNU Affero General Public License as published by the *
Free Software Foundation, either version 3 of the License, *
or (at your option) any later version. *
*
* The CertiVox MIRACL Crypto SDK is distributed in the hope *
that it will be useful, but WITHOUT ANY WARRANTY; without even the *
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *
See the GNU Affero General Public License for more details. *
*
* You should have received a copy of the GNU Affero General Public *
License along with CertiVox MIRACL Crypto SDK. *
If not, see <http://www.gnu.org/licenses/>. *
*
You can be released from the requirements of the license by purchasing *
a commercial license. Buying such a license is mandatory as soon as you *
develop commercial activities involving the CertiVox MIRACL Crypto SDK *
without disclosing the source code of your own applications, or shipping *
the CertiVox MIRACL Crypto SDK with a closed source product. *
*
***************************************************************************/
/*
*
* MIRACL Core module - contains initialisation code and general purpose
* utilities
* mrcore.c
*
* Space can be saved by removing unneeded functions (mr_and ?)
*
*/
#include "miracl.h"
#include <stdlib.h>
#include <string.h>
#ifdef MR_FP
#include <math.h>
#endif
/*** Multi-Threaded Support ***/
#ifndef MR_GENERIC_MT
#ifdef MR_OPENMP_MT
#include <omp.h>
#define MR_MIP_EXISTS
miracl *mr_mip;
#pragma omp threadprivate(mr_mip)
miracl *get_mip()
{
return mr_mip;
}
void mr_init_threading()
{
}
void mr_end_threading()
{
}
#endif
#ifdef MR_WINDOWS_MT
#include <windows.h>
DWORD mr_key;
miracl *get_mip()
{
return (miracl *)TlsGetValue(mr_key);
}
void mr_init_threading()
{
mr_key=TlsAlloc();
}
void mr_end_threading()
{
TlsFree(mr_key);
}
#endif
#ifdef MR_UNIX_MT
#include <pthread.h>
pthread_key_t mr_key;
miracl *get_mip()
{
return (miracl *)pthread_getspecific(mr_key);
}
void mr_init_threading()
{
pthread_key_create(&mr_key,(void(*)(void *))NULL);
}
void mr_end_threading()
{
pthread_key_delete(mr_key);
}
#endif
#ifndef MR_WINDOWS_MT
#ifndef MR_UNIX_MT
#ifndef MR_OPENMP_MT
#ifdef MR_STATIC
miracl mip;
miracl *mr_mip=&mip;
#else
miracl *mr_mip=NULL; /* MIRACL's one and only global variable */
#endif
#define MR_MIP_EXISTS
miracl *get_mip()
{
return (miracl *)mr_mip;
}
#endif
#endif
#endif
#ifdef MR_MIP_EXISTS
void set_mip(miracl *mip)
{
mr_mip=mip;
}
#endif
#endif
/* See Advanced Windows by Jeffrey Richter, Chapter 12 for methods for
creating different instances of this global for each executing thread
when using Windows '95/NT
*/
#ifdef MR_STATIC
#if MIRACL==8
static const int mr_small_primes[]=
{2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,
107,109,113,127,0};
#else
static const int mr_small_primes[]=
{2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,
107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,
223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,
337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,
457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,
593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,
719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,
857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,
997,0};
#endif
#endif
#ifndef MR_STRIPPED_DOWN
#ifndef MR_NO_STANDARD_IO
static char *names[] =
{(char *)"your program",(char *)"innum",(char *)"otnum",(char *)"jack",(char *)"normalise",
(char *)"multiply",(char *)"divide",(char *)"incr",(char *)"decr",(char *)"premult",
(char *)"subdiv",(char *)"fdsize",(char *)"egcd",(char *)"cbase",
(char *)"cinnum",(char *)"cotnum",(char *)"nroot",(char *)"power",
(char *)"powmod",(char *)"bigdig",(char *)"bigrand",(char *)"nxprime",(char *)"isprime",
(char *)"mirvar",(char *)"mad",(char *)"multi_inverse",(char *)"putdig",
(char *)"add",(char *)"subtract",(char *)"mirsys",(char *)"xgcd",
(char *)"fpack",(char *)"dconv",(char *)"mr_shift",(char *)"mround",(char *)"fmul",
(char *)"fdiv",(char *)"fadd",(char *)"fsub",(char *)"fcomp",(char *)"fconv",
(char *)"frecip",(char *)"fpmul",(char *)"fincr",(char *)"",(char *)"ftrunc",
(char *)"frand",(char *)"sftbit",(char *)"build",(char *)"logb2",(char *)"expint",
(char *)"fpower",(char *)"froot",(char *)"fpi",(char *)"fexp",(char *)"flog",(char *)"fpowf",
(char *)"ftan",(char *)"fatan",(char *)"fsin",(char *)"fasin",(char *)"fcos",(char *)"facos",
(char *)"ftanh",(char *)"fatanh",(char *)"fsinh",(char *)"fasinh",(char *)"fcosh",
(char *)"facosh",(char *)"flop",(char *)"gprime",(char *)"powltr",(char *)"fft_mult",
(char *)"crt_init",(char *)"crt",(char *)"otstr",(char *)"instr",(char *)"cotstr",(char *)"cinstr",(char *)"powmod2",
(char *)"prepare_monty",(char *)"nres",(char *)"redc",(char *)"nres_modmult",(char *)"nres_powmod",
(char *)"nres_moddiv",(char *)"nres_powltr",(char *)"divisible",(char *)"remain",
(char *)"fmodulo",(char *)"nres_modadd",(char *)"nres_modsub",(char *)"nres_negate",
(char *)"ecurve_init",(char *)"ecurve_add",(char *)"ecurve_mult",
(char *)"epoint_init",(char *)"epoint_set",(char *)"epoint_get",(char *)"nres_powmod2",
(char *)"nres_sqroot",(char *)"sqroot",(char *)"nres_premult",(char *)"ecurve_mult2",
(char *)"ecurve_sub",(char *)"trial_division",(char *)"nxsafeprime",(char *)"nres_lucas",(char *)"lucas",
(char *)"brick_init",(char *)"pow_brick",(char *)"set_user_function",
(char *)"nres_powmodn",(char *)"powmodn",(char *)"ecurve_multn",
(char *)"ebrick_init",(char *)"mul_brick",(char *)"epoint_norm",(char *)"nres_multi_inverse",(char *)"",
(char *)"nres_dotprod",(char *)"epoint_negate",(char *)"ecurve_multi_add",
(char *)"ecurve2_init",(char *)"",(char *)"epoint2_set",(char *)"epoint2_norm",(char *)"epoint2_get",
(char *)"epoint2_comp",(char *)"ecurve2_add",(char *)"epoint2_negate",(char *)"ecurve2_sub",
(char *)"ecurve2_multi_add",(char *)"ecurve2_mult",(char *)"ecurve2_multn",(char *)"ecurve2_mult2",
(char *)"ebrick2_init",(char *)"mul2_brick",(char *)"prepare_basis",(char *)"strong_bigrand",
(char *)"bytes_to_big",(char *)"big_to_bytes",(char *)"set_io_buffer_size",
(char *)"epoint_getxyz",(char *)"epoint_double_add",(char *)"nres_double_inverse",
(char *)"double_inverse",(char *)"epoint_x",(char *)"hamming",(char *)"expb2",(char *)"bigbits",
(char *)"nres_lazy",(char *)"zzn2_imul",(char *)"nres_double_modadd",(char *)"nres_double_modsub",
/*155*/(char *)"",(char *)"zzn2_from_int",(char *)"zzn2_negate",(char *)"zzn2_conj",(char *)"zzn2_add",
(char *)"zzn2_sub",(char *)"zzn2_smul",(char *)"zzn2_mul",(char *)"zzn2_inv",(char *)"zzn2_timesi",(char *)"zzn2_powl",
(char *)"zzn2_from_bigs",(char *)"zzn2_from_big",(char *)"zzn2_from_ints",
(char *)"zzn2_sadd",(char *)"zzn2_ssub",(char *)"zzn2_times_irp",(char *)"zzn2_div2",
(char *)"zzn3_from_int",(char *)"zzn3_from_ints",(char *)"zzn3_from_bigs",
(char *)"zzn3_from_big",(char *)"zzn3_negate",(char *)"zzn3_powq",(char *)"zzn3_init",
(char *)"zzn3_add",(char *)"zzn3_sadd",(char *)"zzn3_sub",(char *)"zzn3_ssub",(char *)"zzn3_smul",
(char *)"zzn3_imul",(char *)"zzn3_mul",(char *)"zzn3_inv",(char *)"zzn3_div2",(char *)"zzn3_timesi",
(char *)"epoint_multi_norm",(char *)"mr_jsf",(char *)"epoint2_multi_norm",
(char *)"ecn2_compare",(char *)"ecn2_norm",(char *)"ecn2_set",(char *)"zzn2_txx",
(char *)"zzn2_txd",(char *)"nres_div2",(char *)"nres_div3",(char *)"zzn2_div3",
(char *)"ecn2_setx",(char *)"ecn2_rhs",(char *)"zzn2_qr",(char *)"zzn2_sqrt",(char *)"ecn2_add",(char *)"ecn2_mul2_jsf",(char *)"ecn2_mul",
(char *)"nres_div5",(char *)"zzn2_div5",(char *)"zzn2_sqr",(char *)"ecn2_add_sub",(char *)"ecn2_psi",(char *)"invmodp",
(char *)"zzn2_multi_inverse",(char *)"ecn2_multi_norm",(char *)"ecn2_precomp",(char *)"ecn2_mul4_gls_v",
(char *)"ecn2_mul2",(char *)"ecn2_precomp_gls",(char *)"ecn2_mul2_gls",
(char *)"ecn2_brick_init",(char *)"ecn2_mul_brick_gls",(char *)"ecn2_multn",(char *)"zzn3_timesi2",
(char *)"nres_complex",(char *)"zzn4_from_int",(char *)"zzn4_negate",(char *)"zzn4_conj",(char *)"zzn4_add",(char *)"zzn4_sadd",(char *)"zzn4_sub",(char *)"zzn4_ssub",(char *)"zzn4_smul",(char *)"zzn4_sqr",
(char *)"zzn4_mul",(char *)"zzn4_inv",(char *)"zzn4_div2",(char *)"zzn4_powq",(char *)"zzn4_tx",(char *)"zzn4_imul",(char *)"zzn4_lmul",(char *)"zzn4_from_big",
(char *)"ecn2_mult4"};
/* 0 - 243 (244 in all) */
#endif
#endif
#ifdef MR_NOASM
/* C only versions of muldiv/muldvd/muldvd2/muldvm */
/* Note that mr_large should be twice the size of mr_small */
mr_small muldiv(mr_small a,mr_small b,mr_small c,mr_small m,mr_small *rp)
{
mr_small q;
mr_large ldres,p=(mr_large)a*b+c;
q=(mr_small)(MR_LROUND(p/m));
*rp=(mr_small)(p-(mr_large)q*m);
return q;
}
#ifdef MR_FP_ROUNDING
mr_small imuldiv(mr_small a,mr_small b,mr_small c,mr_small m,mr_large im,mr_small *rp)
{
mr_small q;
mr_large ldres,p=(mr_large)a*b+c;
q=(mr_small)MR_LROUND(p*im);
*rp=(mr_small)(p-(mr_large)q*m);
return q;
}
#endif
#ifndef MR_NOFULLWIDTH
mr_small muldvm(mr_small a,mr_small c,mr_small m,mr_small *rp)
{
mr_small q;
union doubleword dble;
dble.h[MR_BOT]=c;
dble.h[MR_TOP]=a;
q=(mr_small)(dble.d/m);
*rp=(mr_small)(dble.d-(mr_large)q*m);
return q;
}
mr_small muldvd(mr_small a,mr_small b,mr_small c,mr_small *rp)
{
union doubleword dble;
dble.d=(mr_large)a*b+c;
*rp=dble.h[MR_BOT];
return dble.h[MR_TOP];
}
void muldvd2(mr_small a,mr_small b,mr_small *c,mr_small *rp)
{
union doubleword dble;
dble.d=(mr_large)a*b+*c+*rp;
*rp=dble.h[MR_BOT];
*c=dble.h[MR_TOP];
}
#endif
#endif
#ifdef MR_NOFULLWIDTH
/* no FULLWIDTH working, so supply dummies */
/*
mr_small muldvd(mr_small a,mr_small b,mr_small c,mr_small *rp)
{
return (mr_small)0;
}
mr_small muldvm(mr_small a,mr_small c,mr_small m,mr_small *rp)
{
return (mr_small)0;
}
void muldvd2(mr_small a,mr_small b,mr_small *c,mr_small *rp)
{
}
*/
#endif
#ifndef MR_NO_STANDARD_IO
static void mputs(char *s)
{ /* output a string */
int i=0;
while (s[i]!=0) fputc((int)s[i++],stdout);
}
#endif
void mr_berror(_MIPD_ int nerr)
{ /* Big number error routine */
#ifndef MR_STRIPPED_DOWN
int i;
#endif
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
if (mr_mip->ERCON)
{
mr_mip->ERNUM=nerr;
return;
}
#ifndef MR_NO_STANDARD_IO
#ifndef MR_STRIPPED_DOWN
mputs((char *)"\nMIRACL error from routine ");
if (mr_mip->depth<MR_MAXDEPTH) mputs(names[mr_mip->trace[mr_mip->depth]]);
else mputs((char *)"???");
fputc('\n',stdout);
for (i=mr_mip->depth-1;i>=0;i--)
{
mputs((char *)" called from ");
if (i<MR_MAXDEPTH) mputs(names[mr_mip->trace[i]]);
else mputs((char *)"???");
fputc('\n',stdout);
}
switch (nerr)
{
case 1 :
mputs((char *)"Number base too big for representation\n");
break;
case 2 :
mputs((char *)"Division by zero attempted\n");
break;
case 3 :
mputs((char *)"Overflow - Number too big\n");
break;
case 4 :
mputs((char *)"Internal result is negative\n");
break;
case 5 :
mputs((char *)"Input format error\n");
break;
case 6 :
mputs((char *)"Illegal number base\n");
break;
case 7 :
mputs((char *)"Illegal parameter usage\n");
break;
case 8 :
mputs((char *)"Out of space\n");
break;
case 9 :
mputs((char *)"Even root of a negative number\n");
break;
case 10:
mputs((char *)"Raising integer to negative power\n");
break;
case 11:
mputs((char *)"Attempt to take illegal root\n");
break;
case 12:
mputs((char *)"Integer operation attempted on Flash number\n");
break;
case 13:
mputs((char *)"Flash overflow\n");
break;
case 14:
mputs((char *)"Numbers too big\n");
break;
case 15:
mputs((char *)"Log of a non-positive number\n");
break;
case 16:
mputs((char *)"Flash to double conversion failure\n");
break;
case 17:
mputs((char *)"I/O buffer overflow\n");
break;
case 18:
mputs((char *)"MIRACL not initialised - no call to mirsys()\n");
break;
case 19:
mputs((char *)"Illegal modulus \n");
break;
case 20:
mputs((char *)"No modulus defined\n");
break;
case 21:
mputs((char *)"Exponent too big\n");
break;
case 22:
mputs((char *)"Unsupported Feature - check mirdef.h\n");
break;
case 23:
mputs((char *)"Specified double length type isn't double length\n");
break;
case 24:
mputs((char *)"Specified basis is NOT irreducible\n");
break;
case 25:
mputs((char *)"Unable to control Floating-point rounding\n");
break;
case 26:
mputs((char *)"Base must be binary (MR_ALWAYS_BINARY defined in mirdef.h ?)\n");
break;
case 27:
mputs((char *)"No irreducible basis defined\n");
break;
case 28:
mputs((char *)"Composite modulus\n");
break;
case 29:
mputs((char *)"Input/output error when reading from RNG device node\n");
break;
default:
mputs((char *)"Undefined error\n");
break;
}
exit(0);
#else
mputs((char *)"MIRACL error\n");
exit(0);
#endif
#endif
}
#ifndef MR_STRIPPED_DOWN
void mr_track(_MIPDO_ )
{ /* track course of program execution *
* through the MIRACL routines */
#ifndef MR_NO_STANDARD_IO
int i;
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
for (i=0;i<mr_mip->depth;i++) fputc('-',stdout);
fputc('>',stdout);
mputs(names[mr_mip->trace[mr_mip->depth]]);
fputc('\n',stdout);
#endif
}
#endif
#ifndef MR_NO_RAND
mr_small brand(_MIPDO_ )
{ /* Marsaglia & Zaman random number generator */
int i,k;
mr_unsign32 pdiff,t;
mr_small r;
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
if (mr_mip->lg2b>32)
{ /* underlying type is > 32 bits. Assume <= 64 bits */
mr_mip->rndptr+=2;
if (mr_mip->rndptr<NK-1)
{
r=(mr_small)mr_mip->ira[mr_mip->rndptr];
r=mr_shiftbits(r,mr_mip->lg2b-32);
r+=(mr_small)mr_mip->ira[mr_mip->rndptr+1];
return r;
}
}
else
{
mr_mip->rndptr++;
if (mr_mip->rndptr<NK) return (mr_small)mr_mip->ira[mr_mip->rndptr];
}
mr_mip->rndptr=0;
for (i=0,k=NK-NJ;i<NK;i++,k++)
{ /* calculate next NK values */
if (k==NK) k=0;
t=mr_mip->ira[k];
pdiff=t - mr_mip->ira[i] - mr_mip->borrow;
if (pdiff<t) mr_mip->borrow=0;
if (pdiff>t) mr_mip->borrow=1;
mr_mip->ira[i]=pdiff;
}
if (mr_mip->lg2b>32)
{ /* double up */
r=(mr_small)mr_mip->ira[0];
r=mr_shiftbits(r,mr_mip->lg2b-32);
r+=(mr_small)mr_mip->ira[1];
return r;
}
else return (mr_small)(mr_mip->ira[0]);
}
void irand(_MIPD_ mr_unsign32 seed)
{ /* initialise random number system */
int i,in;
mr_unsign32 t,m=1L;
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
mr_mip->borrow=0L;
mr_mip->rndptr=0;
mr_mip->ira[0]=seed;
for (i=1;i<NK;i++)
{ /* fill initialisation vector */
in=(NV*i)%NK;
mr_mip->ira[in]=m;
t=m;
m=seed-m;
seed=t;
}
for (i=0;i<1000;i++) brand(_MIPPO_ ); /* "warm-up" & stir the generator */
}
#endif
mr_small mr_shiftbits(mr_small x,int n)
{
#ifdef MR_FP
int i;
mr_small dres;
if (n==0) return x;
if (n>0)
{
for (i=0;i<n;i++) x=x+x;
return x;
}
n=-n;
for (i=0;i<n;i++) x=MR_DIV(x,2.0);
return x;
#else
if (n==0) return x;
if (n>0) x<<=n;
else x>>=(-n);
return x;
#endif
}
mr_small mr_setbase(_MIPD_ mr_small nb)
{ /* set base. Pack as many digits as *
* possible into each computer word */
mr_small temp;
#ifdef MR_FP
mr_small dres;
#endif
#ifndef MR_NOFULLWIDTH
BOOL fits;
int bits;
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
fits=FALSE;
bits=MIRACL;
while (bits>1)
{
bits/=2;
temp=((mr_small)1<<bits);
if (temp==nb)
{
fits=TRUE;
break;
}
if (temp<nb || (bits%2)!=0) break;
}
if (fits)
{
mr_mip->apbase=nb;
mr_mip->pack=MIRACL/bits;
mr_mip->base=0;
return 0;
}
#endif
mr_mip->apbase=nb;
mr_mip->pack=1;
mr_mip->base=nb;
#ifdef MR_SIMPLE_BASE
return 0;
#else
if (mr_mip->base==0) return 0;
temp=MR_DIV(MAXBASE,nb);
while (temp>=nb)
{
temp=MR_DIV(temp,nb);
mr_mip->base*=nb;
mr_mip->pack++;
}
#ifdef MR_FP_ROUNDING
mr_mip->inverse_base=mr_invert(mr_mip->base);
return mr_mip->inverse_base;
#else
return 0;
#endif
#endif
}
#ifdef MR_FLASH
BOOL fit(big x,big y,int f)
{ /* returns TRUE if x/y would fit flash format of length f */
int n,d;
n=(int)(x->len&(MR_OBITS));
d=(int)(y->len&(MR_OBITS));
if (n==1 && x->w[0]==1) n=0;
if (d==1 && y->w[0]==1) d=0;
if (n+d<=f) return TRUE;
return FALSE;
}
#endif
int mr_lent(flash x)
{ /* return length of big or flash in words */
mr_lentype lx;
lx=(x->len&(MR_OBITS));
#ifdef MR_FLASH
return (int)((lx&(MR_MSK))+((lx>>(MR_BTS))&(MR_MSK)));
#else
return (int)lx;
#endif
}
void zero(flash x)
{ /* set big/flash number to zero */
int i,n;
mr_small *g;
if (x==NULL) return;
#ifdef MR_FLASH
n=mr_lent(x);
#else
n=(x->len&MR_OBITS);
#endif
g=x->w;
for (i=0;i<n;i++)
g[i]=0;
x->len=0;
}
void uconvert(_MIPD_ unsigned int n ,big x)
{ /* convert unsigned integer n to big number format */
int m;
#ifdef MR_FP
mr_small dres;
#endif
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
zero(x);
if (n==0) return;
m=0;
#ifndef MR_SIMPLE_BASE
if (mr_mip->base==0)
{
#endif
#ifndef MR_NOFULLWIDTH
#if MR_IBITS > MIRACL
while (n>0)
{
x->w[m++]=(mr_small)(n%((mr_small)1<<(MIRACL)));
n/=((mr_small)1<<(MIRACL));
}
#else
x->w[m++]=(mr_small)n;
#endif
#endif
#ifndef MR_SIMPLE_BASE
}
else while (n>0)
{
x->w[m++]=MR_REMAIN((mr_small)n,mr_mip->base);
n=(unsigned int)((mr_small)n/mr_mip->base);
}
#endif
x->len=m;
}
void tconvert(_MIPD_ mr_utype n,big x)
{
mr_lentype s;
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
if (n==0) {zero(x); return;}
s=0;
if (n<0)
{
s=MR_MSBIT;
n=(-n);
}
x->w[0]=n;
x->len=1;
x->len|=s;
}
void convert(_MIPD_ int n ,big x)
{ /* convert signed integer n to big number format */
mr_lentype s;
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
if (n==0) {zero(x); return;}
s=0;
if (n<0)
{
s=MR_MSBIT;
n=(-n);
}
uconvert(_MIPP_ (unsigned int)n,x);
x->len|=s;
}
#ifndef MR_STATIC
#ifdef mr_dltype
void dlconv(_MIPD_ mr_dltype n,big x)
{ /* convert double length integer to big number format - rarely needed */
int m;
mr_lentype s;
#ifdef MR_FP
mr_small dres;
#endif
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
zero(x);
if (n==0) return;
s=0;
if (n<0)
{
s=MR_MSBIT;
n=(-n);
}
m=0;
#ifndef MR_SIMPLE_BASE
if (mr_mip->base==0)
{
#endif
#ifndef MR_NOFULLWIDTH
while (n>0)
{
x->w[m++]=(mr_small)(n%((mr_dltype)1<<(MIRACL)));
n/=((mr_dltype)1<<(MIRACL));
}
#endif
#ifndef MR_SIMPLE_BASE
}
else while (n>0)
{
x->w[m++]=(mr_small)MR_REMAIN(n,mr_mip->base);
n/=mr_mip->base;
}
#endif
x->len=(m|s);
}
#endif
void ulgconv(_MIPD_ unsigned long n,big x)
{ /* convert unsigned long integer to big number format - rarely needed */
int m;
#ifdef MR_FP
mr_small dres;
#endif
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
zero(x);
if (n==0) return;
m=0;
#ifndef MR_SIMPLE_BASE
if (mr_mip->base==0)
{
#endif
#ifndef MR_NOFULLWIDTH
#if MR_LBITS > MIRACL
while (n>0)
{
x->w[m++]=(mr_small)(n%(1L<<(MIRACL)));
n/=(1L<<(MIRACL));
}
#else
x->w[m++]=(mr_small)n;
#endif
#endif
#ifndef MR_SIMPLE_BASE
}
else while (n>0)
{
x->w[m++]=MR_REMAIN(n,mr_mip->base);
n=(unsigned long)((mr_small)n/mr_mip->base);
}
#endif
x->len=m;
}
void lgconv(_MIPD_ long n,big x)
{ /* convert signed long integer to big number format - rarely needed */
mr_lentype s;
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
if (n==0) {zero(x); return;}
s=0;
if (n<0)
{
s=MR_MSBIT;
n=(-n);
}
ulgconv(_MIPP_ (unsigned long)n,x);
x->len|=s;
}
flash mirvar(_MIPD_ int iv)
{ /* initialize big/flash number */
flash x;
int align;
char *ptr;
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
if (mr_mip->ERNUM) return NULL;
MR_IN(23);
if (!(mr_mip->active))
{
mr_berror(_MIPP_ MR_ERR_NO_MIRSYS);
MR_OUT
return NULL;
}
/* OK, now I control alignment.... */
/* Allocate space for big, the length, the pointer, and the array */
/* Do it all in one memory allocation - this is quicker */
/* Ensure that the array has correct alignment */
x=(big)mr_alloc(_MIPP_ mr_size(mr_mip->nib-1),1);
if (x==NULL)
{
MR_OUT
return x;
}
ptr=(char *)&x->w;
align=(unsigned long)(ptr+sizeof(mr_small *))%sizeof(mr_small);
x->w=(mr_small *)(ptr+sizeof(mr_small *)+sizeof(mr_small)-align);
if (iv!=0) convert(_MIPP_ iv,x);
MR_OUT
return x;
}
#endif
flash mirvar_mem_variable(char *mem,int index,int sz)
{
flash x;
int align;
char *ptr;
int offset,r;
/* alignment */
offset=0;
r=(unsigned long)mem%MR_SL;
if (r>0) offset=MR_SL-r;
x=(big)&mem[offset+mr_size(sz)*index];
ptr=(char *)&x->w;
align=(unsigned long)(ptr+sizeof(mr_small *))%sizeof(mr_small);
x->w=(mr_small *)(ptr+sizeof(mr_small *)+sizeof(mr_small)-align);
return x;
}
flash mirvar_mem(_MIPD_ char *mem,int index)
{ /* initialize big/flash number from pre-allocated memory */
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
if (mr_mip->ERNUM) return NULL;
return mirvar_mem_variable(mem,index,mr_mip->nib-1);
}
void set_user_function(_MIPD_ BOOL (*user)(void))
{
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
if (mr_mip->ERNUM) return;
MR_IN(111)
if (!(mr_mip->active))
{
mr_berror(_MIPP_ MR_ERR_NO_MIRSYS);
MR_OUT
return;
}
mr_mip->user=user;
MR_OUT
}
#ifndef MR_STATIC
#ifndef MR_SIMPLE_IO
void set_io_buffer_size(_MIPD_ int len)
{
int i;
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
if (len<0) return;
MR_IN(142)
for (i=0;i<mr_mip->IOBSIZ;i++) mr_mip->IOBUFF[i]=0;
mr_free(mr_mip->IOBUFF);
if (len==0)
{
MR_OUT
return;
}
mr_mip->IOBSIZ=len;
mr_mip->IOBUFF=(char *)mr_alloc(_MIPP_ len+1,1);
mr_mip->IOBUFF[0]='\0';
MR_OUT
}
#endif
#endif
/* Initialise a big from ROM given its fixed length */
BOOL init_big_from_rom(big x,int len,const mr_small *rom,int romsize,int *romptr)
{
int i;
zero(x);
x->len=len;
for (i=0;i<len;i++)
{
if (*romptr>=romsize) return FALSE;
#ifdef MR_AVR
x->w[i]=pgm_read_byte_near(&rom[*romptr]);
#else
x->w[i]=rom[*romptr];
#endif
(*romptr)++;
}
mr_lzero(x);
return TRUE;
}
/* Initialise an elliptic curve point from ROM */
BOOL init_point_from_rom(epoint *P,int len,const mr_small *rom,int romsize,int *romptr)
{
if (!init_big_from_rom(P->X,len,rom,romsize,romptr)) return FALSE;
if (!init_big_from_rom(P->Y,len,rom,romsize,romptr)) return FALSE;
P->marker=MR_EPOINT_NORMALIZED;
return TRUE;
}
#ifdef MR_GENERIC_AND_STATIC
miracl *mirsys(miracl *mr_mip,int nd,mr_small nb)
#else
miracl *mirsys(int nd,mr_small nb)
#endif
{ /* Initialize MIRACL system to *
* use numbers to base nb, and *
* nd digits or (-nd) bytes long */
/* In these cases mr_mip is passed as the first parameter */
#ifdef MR_GENERIC_AND_STATIC
return mirsys_basic(mr_mip,nd,nb);
#endif
#ifdef MR_GENERIC_MT
#ifndef MR_STATIC
miracl *mr_mip=mr_first_alloc();
return mirsys_basic(mr_mip,nd,nb);
#endif
#endif
/* In these cases mr_mip is a "global" pointer and the mip itself is allocated from the heap.
In fact mr_mip (and mip) may be thread specific if some multi-threading scheme is implemented */
#ifndef MR_STATIC
#ifdef MR_WINDOWS_MT
miracl *mr_mip=mr_first_alloc();
TlsSetValue(mr_key,mr_mip);
#endif
#ifdef MR_UNIX_MT
miracl *mr_mip=mr_first_alloc();
pthread_setspecific(mr_key,mr_mip);
#endif
#ifdef MR_OPENMP_MT
mr_mip=mr_first_alloc();
#endif
#ifndef MR_WINDOWS_MT
#ifndef MR_UNIX_MT
#ifndef MR_OPENMP_MT
mr_mip=mr_first_alloc();
#endif
#endif
#endif
#endif
#ifndef MR_GENERIC_MT
mr_mip=get_mip();
#endif
return mirsys_basic(mr_mip,nd,nb);
}
miracl *mirsys_basic(miracl *mr_mip,int nd,mr_small nb)
{
#ifndef MR_NO_RAND
int i;
#endif
mr_small b,nw;
#ifdef MR_FP
mr_small dres;
#endif
if (mr_mip==NULL) return NULL;
#ifndef MR_STRIPPED_DOWN
mr_mip->depth=0;
mr_mip->trace[0]=0;
mr_mip->depth++;
mr_mip->trace[mr_mip->depth]=29;
#endif
/* digest hardware configuration */
#ifdef MR_NO_STANDARD_IO
mr_mip->ERCON=TRUE;
#else
mr_mip->ERCON=FALSE;
#endif
#ifndef MR_STATIC
mr_mip->logN=0;
mr_mip->degree=0;
mr_mip->chin.NP=0;
#endif
mr_mip->user=NULL;
mr_mip->same=FALSE;
mr_mip->first_one=FALSE;
mr_mip->debug=FALSE;
mr_mip->AA=0;
#ifndef MR_AFFINE_ONLY
mr_mip->coord=MR_NOTSET;
#endif
#ifdef MR_NOFULLWIDTH
if (nb==0)
{
mr_berror(_MIPP_ MR_ERR_BAD_BASE);
MR_OUT
return mr_mip;
}
#endif
#ifndef MR_FP
#ifdef mr_dltype
#ifndef MR_NOFULLWIDTH
if (sizeof(mr_dltype)<2*sizeof(mr_utype))
{ /* double length type, isn't */
mr_berror(_MIPP_ MR_ERR_NOT_DOUBLE_LEN);
MR_OUT
return mr_mip;
}
#endif
#endif
#endif
if (nb==1 || nb>MAXBASE)
{
mr_berror(_MIPP_ MR_ERR_BAD_BASE);
MR_OUT
return mr_mip;
}
#ifdef MR_FP_ROUNDING
if (mr_setbase(_MIPP_ nb)==0)
{ /* unable in fact to control FP rounding */
mr_berror(_MIPP_ MR_ERR_NO_ROUNDING);
MR_OUT
return mr_mip;
}
#else
mr_setbase(_MIPP_ nb);
#endif
b=mr_mip->base;
#ifdef MR_SIMPLE_BASE
if (b!=0)
{
mr_berror(_MIPP_ MR_ERR_BAD_BASE);
MR_OUT
return mr_mip;
}
#endif
mr_mip->lg2b=0;
mr_mip->base2=1;
#ifndef MR_SIMPLE_BASE
if (b==0)
{
#endif
mr_mip->lg2b=MIRACL;
mr_mip->base2=0;
#ifndef MR_SIMPLE_BASE
}
else while (b>1)
{
b=MR_DIV(b,2);
mr_mip->lg2b++;
mr_mip->base2*=2;
}
#endif
#ifdef MR_ALWAYS_BINARY
if (mr_mip->base!=mr_mip->base2)
{
mr_berror(_MIPP_ MR_ERR_NOT_BINARY);
MR_OUT
return mr_mip;
}
#endif
/* calculate total space for bigs */
/*
big -> |int len|small *ptr| alignment space | size in words +1| alignment up to multiple of 4 |
*/
if (nd>0) nw=MR_ROUNDUP(nd,mr_mip->pack);
else nw=MR_ROUNDUP(8*(-nd),mr_mip->lg2b);
if (nw<1) nw=1;
mr_mip->nib=(int)(nw+1); /* add one extra word for small overflows */
#ifdef MR_STATIC
if (nw>MR_STATIC)
{
mr_berror(_MIPP_ MR_ERR_TOO_BIG);
MR_OUT
return mr_mip;
}
#endif
/* mr_mip->nib=(int)(nw+1); add one extra word for small overflows */
#ifdef MR_FLASH
mr_mip->workprec=mr_mip->nib;
mr_mip->stprec=mr_mip->nib;
while (mr_mip->stprec>2 && mr_mip->stprec>MR_FLASH/mr_mip->lg2b)
mr_mip->stprec=(mr_mip->stprec+1)/2;
if (mr_mip->stprec<2) mr_mip->stprec=2;
#endif
#ifndef MR_DOUBLE_BIG
mr_mip->check=ON;
#else
mr_mip->check=OFF;
#endif
#ifndef MR_SIMPLE_BASE
#ifndef MR_SIMPLE_IO
mr_mip->IOBASE=10; /* defaults */
#endif
#endif
mr_mip->ERNUM=0;
mr_mip->NTRY=6;
mr_mip->MONTY=ON;
#ifdef MR_FLASH
mr_mip->EXACT=TRUE;
mr_mip->RPOINT=OFF;
#endif
#ifndef MR_STRIPPED_DOWN
mr_mip->TRACER=OFF;
#endif
#ifndef MR_SIMPLE_IO
mr_mip->INPLEN=0;
mr_mip->IOBSIZ=MR_DEFAULT_BUFFER_SIZE;
#endif
#ifdef MR_STATIC
mr_mip->PRIMES=mr_small_primes;
#else
mr_mip->PRIMES=NULL;
#ifndef MR_SIMPLE_IO
mr_mip->IOBUFF=(char *)mr_alloc(_MIPP_ MR_DEFAULT_BUFFER_SIZE+1,1);
#endif
#endif
#ifndef MR_SIMPLE_IO
mr_mip->IOBUFF[0]='\0';
#endif
mr_mip->qnr=0;
mr_mip->cnr=0;
mr_mip->TWIST=0;
mr_mip->pmod8=0;
mr_mip->pmod9=0;
/* quick start for rng. irand(.) should be called first before serious use.. */
#ifndef MR_NO_RAND
mr_mip->ira[0]=0x55555555;
mr_mip->ira[1]=0x12345678;
for (i=2;i<NK;i++)
mr_mip->ira[i]=mr_mip->ira[i-1]+mr_mip->ira[i-2]+0x1379BDF1;
mr_mip->rndptr=NK;
mr_mip->borrow=0;
#endif
mr_mip->nib=2*mr_mip->nib+1;
#ifdef MR_FLASH
if (mr_mip->nib!=(mr_mip->nib&(MR_MSK)))
#else
if (mr_mip->nib!=(int)(mr_mip->nib&(MR_OBITS)))
#endif
{
mr_berror(_MIPP_ MR_ERR_TOO_BIG);
mr_mip->nib=(mr_mip->nib-1)/2;
MR_OUT
return mr_mip;
}
#ifndef MR_STATIC
mr_mip->workspace=(char *)memalloc(_MIPP_ MR_SPACES); /* grab workspace */
#else
memset(mr_mip->workspace,0,MR_BIG_RESERVE(MR_SPACES));
#endif
mr_mip->M=0;
mr_mip->fin=FALSE;
mr_mip->fout=FALSE;
mr_mip->active=ON;
mr_mip->nib=(mr_mip->nib-1)/2;
/* allocate memory for workspace variables */
#ifndef MR_DOUBLE_BIG
mr_mip->w0=mirvar_mem(_MIPP_ mr_mip->workspace,0); /* double length */
mr_mip->w1=mirvar_mem(_MIPP_ mr_mip->workspace,2);
mr_mip->w2=mirvar_mem(_MIPP_ mr_mip->workspace,3);
mr_mip->w3=mirvar_mem(_MIPP_ mr_mip->workspace,4);
mr_mip->w4=mirvar_mem(_MIPP_ mr_mip->workspace,5);
mr_mip->w5=mirvar_mem(_MIPP_ mr_mip->workspace,6); /* double length */
mr_mip->w6=mirvar_mem(_MIPP_ mr_mip->workspace,8); /* double length */
mr_mip->w7=mirvar_mem(_MIPP_ mr_mip->workspace,10); /* double length */
mr_mip->w8=mirvar_mem(_MIPP_ mr_mip->workspace,12);
mr_mip->w9=mirvar_mem(_MIPP_ mr_mip->workspace,13);
mr_mip->w10=mirvar_mem(_MIPP_ mr_mip->workspace,14);
mr_mip->w11=mirvar_mem(_MIPP_ mr_mip->workspace,15);
mr_mip->w12=mirvar_mem(_MIPP_ mr_mip->workspace,16);
mr_mip->w13=mirvar_mem(_MIPP_ mr_mip->workspace,17);
mr_mip->w14=mirvar_mem(_MIPP_ mr_mip->workspace,18);
mr_mip->w15=mirvar_mem(_MIPP_ mr_mip->workspace,19);
mr_mip->sru=mirvar_mem(_MIPP_ mr_mip->workspace,20);
mr_mip->modulus=mirvar_mem(_MIPP_ mr_mip->workspace,21);
mr_mip->pR=mirvar_mem(_MIPP_ mr_mip->workspace,22); /* double length */
mr_mip->A=mirvar_mem(_MIPP_ mr_mip->workspace,24);
mr_mip->B=mirvar_mem(_MIPP_ mr_mip->workspace,25);
mr_mip->one=mirvar_mem(_MIPP_ mr_mip->workspace,26);
#ifdef MR_KCM
mr_mip->big_ndash=mirvar_mem(_MIPP_ mr_mip->workspace,27);
mr_mip->ws=mirvar_mem(_MIPP_ mr_mip->workspace,28);
mr_mip->wt=mirvar_mem(_MIPP_ mr_mip->workspace,29); /* double length */
#endif
#ifdef MR_FLASH
#ifdef MR_KCM
mr_mip->pi=mirvar_mem(_MIPP_ mr_mip->workspace,31);
#else
mr_mip->pi=mirvar_mem(_MIPP_ mr_mip->workspace,27);
#endif
#endif
#else
/* w0-w7 are double normal length */
mr_mip->w0=mirvar_mem(_MIPP_ mr_mip->workspace,0); /* quad length */
mr_mip->w1=mirvar_mem(_MIPP_ mr_mip->workspace,4); /* double length */
mr_mip->w2=mirvar_mem(_MIPP_ mr_mip->workspace,6);
mr_mip->w3=mirvar_mem(_MIPP_ mr_mip->workspace,8);
mr_mip->w4=mirvar_mem(_MIPP_ mr_mip->workspace,10);
mr_mip->w5=mirvar_mem(_MIPP_ mr_mip->workspace,12); /* quad length */
mr_mip->w6=mirvar_mem(_MIPP_ mr_mip->workspace,16); /* quad length */
mr_mip->w7=mirvar_mem(_MIPP_ mr_mip->workspace,20); /* quad length */
mr_mip->w8=mirvar_mem(_MIPP_ mr_mip->workspace,24);
mr_mip->w9=mirvar_mem(_MIPP_ mr_mip->workspace,25);
mr_mip->w10=mirvar_mem(_MIPP_ mr_mip->workspace,26);
mr_mip->w11=mirvar_mem(_MIPP_ mr_mip->workspace,27);
mr_mip->w12=mirvar_mem(_MIPP_ mr_mip->workspace,28);
mr_mip->w13=mirvar_mem(_MIPP_ mr_mip->workspace,29);
mr_mip->w14=mirvar_mem(_MIPP_ mr_mip->workspace,30);
mr_mip->w15=mirvar_mem(_MIPP_ mr_mip->workspace,31);
mr_mip->sru=mirvar_mem(_MIPP_ mr_mip->workspace,32);
mr_mip->modulus=mirvar_mem(_MIPP_ mr_mip->workspace,33);
mr_mip->pR=mirvar_mem(_MIPP_ mr_mip->workspace,34); /* double length */
mr_mip->A=mirvar_mem(_MIPP_ mr_mip->workspace,36);
mr_mip->B=mirvar_mem(_MIPP_ mr_mip->workspace,37);
mr_mip->one=mirvar_mem(_MIPP_ mr_mip->workspace,38);
#ifdef MR_KCM
mr_mip->big_ndash=mirvar_mem(_MIPP_ mr_mip->workspace,39);
mr_mip->ws=mirvar_mem(_MIPP_ mr_mip->workspace,40);
mr_mip->wt=mirvar_mem(_MIPP_ mr_mip->workspace,41); /* double length */
#endif
#ifdef MR_FLASH
#ifdef MR_KCM
mr_mip->pi=mirvar_mem(_MIPP_ mr_mip->workspace,43);
#else
mr_mip->pi=mirvar_mem(_MIPP_ mr_mip->workspace,39);
#endif
#endif
#endif
MR_OUT
return mr_mip;
}
#ifndef MR_STATIC
/* allocate space for a number of bigs from the heap */
void *memalloc(_MIPD_ int num)
{
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
return mr_alloc(_MIPP_ mr_big_reserve(num,mr_mip->nib-1),1);
}
#endif
void memkill(_MIPD_ char *mem,int len)
{
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
if (mem==NULL) return;
memset(mem,0,mr_big_reserve(len,mr_mip->nib-1));
#ifndef MR_STATIC
mr_free(mem);
#endif
}
#ifndef MR_STATIC
void mirkill(big x)
{ /* kill a big/flash variable, that is set it to zero
and free its memory */
if (x==NULL) return;
zero(x);
mr_free(x);
}
#endif
void mirexit(_MIPDO_ )
{ /* clean up after miracl */
int i;
#ifdef MR_WINDOWS_MT
miracl *mr_mip=get_mip();
#endif
#ifdef MR_UNIX_MT
miracl *mr_mip=get_mip();
#endif
#ifdef MR_OPENMP_MT
miracl *mr_mip=get_mip();
#endif
mr_mip->ERCON=FALSE;
mr_mip->active=OFF;
memkill(_MIPP_ mr_mip->workspace,MR_SPACES);
#ifndef MR_NO_RAND
for (i=0;i<NK;i++) mr_mip->ira[i]=0L;
#endif
#ifndef MR_STATIC
#ifndef MR_SIMPLE_IO
set_io_buffer_size(_MIPP_ 0);
#endif
if (mr_mip->PRIMES!=NULL) mr_free(mr_mip->PRIMES);
#else
#ifndef MR_SIMPLE_IO
for (i=0;i<=MR_DEFAULT_BUFFER_SIZE;i++)
mr_mip->IOBUFF[i]=0;
#endif
#endif
#ifndef MR_STATIC
mr_free(mr_mip);
#ifdef MR_WINDOWS_MT
TlsSetValue(mr_key, NULL); /* Thank you Thales */
#endif
#endif
#ifndef MR_GENERIC_MT
#ifndef MR_WINDOWS_MT
#ifndef MR_UNIX_MT
#ifndef MR_STATIC
mr_mip=NULL;
#endif
#endif
#endif
#endif
#ifdef MR_OPENMP_MT
mr_mip=NULL;
#endif
}
int exsign(flash x)
{ /* extract sign of big/flash number */
if ((x->len&(MR_MSBIT))==0) return PLUS;
else return MINUS;
}
void insign(int s,flash x)
{ /* assert sign of big/flash number */
if (x->len==0) return;
if (s<0) x->len|=MR_MSBIT;
else x->len&=MR_OBITS;
}
void mr_lzero(big x)
{ /* strip leading zeros from big number */
mr_lentype s;
int m;
s=(x->len&(MR_MSBIT));
m=(int)(x->len&(MR_OBITS));
while (m>0 && x->w[m-1]==0)
m--;
x->len=m;
if (m>0) x->len|=s;
}
#ifndef MR_SIMPLE_IO
int getdig(_MIPD_ big x,int i)
{ /* extract a packed digit */
int k;
mr_small n;
#ifdef MR_FP
mr_small dres;
#endif
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
i--;
n=x->w[i/mr_mip->pack];
if (mr_mip->pack==1) return (int)n;
k=i%mr_mip->pack;
for (i=1;i<=k;i++)
n=MR_DIV(n,mr_mip->apbase);
return (int)MR_REMAIN(n,mr_mip->apbase);
}
int numdig(_MIPD_ big x)
{ /* returns number of digits in x */
int nd;
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
if (x->len==0) return 0;
nd=(int)(x->len&(MR_OBITS))*mr_mip->pack;
while (getdig(_MIPP_ x,nd)==0)
nd--;
return nd;
}
void putdig(_MIPD_ int n,big x,int i)
{ /* insert a digit into a packed word */
int j,k,lx;
mr_small m,p;
mr_lentype s;
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
if (mr_mip->ERNUM) return;
MR_IN(26)
s=(x->len&(MR_MSBIT));
lx=(int)(x->len&(MR_OBITS));
m=getdig(_MIPP_ x,i);
p=n;
i--;
j=i/mr_mip->pack;
k=i%mr_mip->pack;
for (i=1;i<=k;i++)
{
m*=mr_mip->apbase;
p*=mr_mip->apbase;
}
if (j>=mr_mip->nib && (mr_mip->check || j>=2*mr_mip->nib))
{
mr_berror(_MIPP_ MR_ERR_OVERFLOW);
MR_OUT
return;
}
x->w[j]=(x->w[j]-m)+p;
if (j>=lx) x->len=((j+1)|s);
mr_lzero(x);
MR_OUT
}
#endif
#ifndef MR_FP
void mr_and(big x,big y,big z)
{ /* z= bitwise logical AND of x and y */
int i,nx,ny,nz,nr;
if (x==y)
{
copy(x,z);
return;
}
#ifdef MR_FLASH
nx=mr_lent(x);
ny=mr_lent(y);
nz=mr_lent(z);
#else
ny=(y->len&(MR_OBITS));
nx=(x->len&(MR_OBITS));
nz=(z->len&(MR_OBITS));
#endif
if (ny<nx) nr=ny;
else nr=nx;
for (i=0;i<nr;i++)
z->w[i]=x->w[i]&y->w[i];
for (i=nr;i<nz;i++)
z->w[i]=0;
z->len=nr;
mr_lzero(z);
}
void mr_xor(big x,big y,big z)
{
int i,nx,ny,nz,nr;
if (x==y)
{
copy(x,z);
return;
}
#ifdef MR_FLASH
nx=mr_lent(x);
ny=mr_lent(y);
nz=mr_lent(z);
#else
ny=(y->len&(MR_OBITS));
nx=(x->len&(MR_OBITS));
nz=(z->len&(MR_OBITS));
#endif
if (ny<nx) nr=nx;
else nr=ny;
for (i=0;i<nr;i++)
z->w[i]=x->w[i]^y->w[i];
for (i=nr;i<nz;i++)
z->w[i]=0;
z->len=nr;
mr_lzero(z);
}
#endif
void copy(flash x,flash y)
{ /* copy x to y: y=x */
int i,nx,ny;
mr_small *gx,*gy;
if (x==y || y==NULL) return;
if (x==NULL)
{
zero(y);
return;
}
#ifdef MR_FLASH
ny=mr_lent(y);
nx=mr_lent(x);
#else
ny=(y->len&(MR_OBITS));
nx=(x->len&(MR_OBITS));
#endif
gx=x->w;
gy=y->w;
for (i=nx;i<ny;i++)
gy[i]=0;
for (i=0;i<nx;i++)
gy[i]=gx[i];
y->len=x->len;
}
void negify(flash x,flash y)
{ /* negate a big/flash variable: y=-x */
copy(x,y);
if (y->len!=0) y->len^=MR_MSBIT;
}
void absol(flash x,flash y)
{ /* y=abs(x) */
copy(x,y);
y->len&=MR_OBITS;
}
BOOL mr_notint(flash x)
{ /* returns TRUE if x is Flash */
#ifdef MR_FLASH
if ((((x->len&(MR_OBITS))>>(MR_BTS))&(MR_MSK))!=0) return TRUE;
#endif
return FALSE;
}
void mr_shift(_MIPD_ big x,int n,big w)
{ /* set w=x.(mr_base^n) by shifting */
mr_lentype s;
int i,bl;
mr_small *gw=w->w;
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
if (mr_mip->ERNUM) return;
copy(x,w);
if (w->len==0 || n==0) return;
MR_IN(33)
if (mr_notint(w)) mr_berror(_MIPP_ MR_ERR_INT_OP);
s=(w->len&(MR_MSBIT));
bl=(int)(w->len&(MR_OBITS))+n;
if (bl<=0)
{
zero(w);
MR_OUT
return;
}
if (bl>mr_mip->nib && mr_mip->check) mr_berror(_MIPP_ MR_ERR_OVERFLOW);
if (mr_mip->ERNUM)
{
MR_OUT
return;
}
if (n>0)
{
for (i=bl-1;i>=n;i--)
gw[i]=gw[i-n];
for (i=0;i<n;i++)
gw[i]=0;
}
else
{
n=(-n);
for (i=0;i<bl;i++)
gw[i]=gw[i+n];
for (i=0;i<n;i++)
gw[bl+i]=0;
}
w->len=(bl|s);
MR_OUT
}
int size(big x)
{ /* get size of big number; convert to *
* integer - if possible */
int n,m;
mr_lentype s;
if (x==NULL) return 0;
s=(x->len&MR_MSBIT);
m=(int)(x->len&MR_OBITS);
if (m==0) return 0;
if (m==1 && x->w[0]<(mr_small)MR_TOOBIG) n=(int)x->w[0];
else n=MR_TOOBIG;
if (s==MR_MSBIT) return (-n);
return n;
}
int mr_compare(big x,big y)
{ /* compare x and y: =1 if x>y =-1 if x<y *
* =0 if x=y */
int m,n,sig;
mr_lentype sx,sy;
if (x==y) return 0;
sx=(x->len&MR_MSBIT);
sy=(y->len&MR_MSBIT);
if (sx==0) sig=PLUS;
else sig=MINUS;
if (sx!=sy) return sig;
m=(int)(x->len&MR_OBITS);
n=(int)(y->len&MR_OBITS);
if (m>n) return sig;
if (m<n) return -sig;
while (m>0)
{ /* check digit by digit */
m--;
if (x->w[m]>y->w[m]) return sig;
if (x->w[m]<y->w[m]) return -sig;
}
return 0;
}
#ifdef MR_FLASH
void fpack(_MIPD_ big n,big d,flash x)
{ /* create floating-slash number x=n/d from *
* big integer numerator and denominator */
mr_lentype s;
int i,ld,ln;
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
if (mr_mip->ERNUM) return;
MR_IN(31)
ld=(int)(d->len&MR_OBITS);
if (ld==0) mr_berror(_MIPP_ MR_ERR_FLASH_OVERFLOW);
if (ld==1 && d->w[0]==1) ld=0;
if (x==d) mr_berror(_MIPP_ MR_ERR_BAD_PARAMETERS);
if (mr_notint(n) || mr_notint(d)) mr_berror(_MIPP_ MR_ERR_INT_OP);
s=(n->len&MR_MSBIT);
ln=(int)(n->len&MR_OBITS);
if (ln==1 && n->w[0]==1) ln=0;
if ((ld+ln>mr_mip->nib) && (mr_mip->check || ld+ln>2*mr_mip->nib))
mr_berror(_MIPP_ MR_ERR_FLASH_OVERFLOW);
if (mr_mip->ERNUM)
{
MR_OUT
return;
}
copy(n,x);
if (n->len==0)
{
MR_OUT
return;
}
s^=(d->len&MR_MSBIT);
if (ld==0)
{
if (x->len!=0) x->len|=s;
MR_OUT
return;
}
for (i=0;i<ld;i++)
x->w[ln+i]=d->w[i];
x->len=(s|(ln+((mr_lentype)ld<<MR_BTS)));
MR_OUT
}
void numer(_MIPD_ flash x,big y)
{ /* extract numerator of x */
int i,ln,ld;
mr_lentype s,ly;
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
if (mr_mip->ERNUM) return;
if (mr_notint(x))
{
s=(x->len&MR_MSBIT);
ly=(x->len&MR_OBITS);
ln=(int)(ly&MR_MSK);
if (ln==0)
{
if(s==MR_MSBIT) convert(_MIPP_ (-1),y);
else convert(_MIPP_ 1,y);
return;
}
ld=(int)((ly>>MR_BTS)&MR_MSK);
if (x!=y)
{
for (i=0;i<ln;i++) y->w[i]=x->w[i];
for (i=ln;i<mr_lent(y);i++) y->w[i]=0;
}
else for (i=0;i<ld;i++) y->w[ln+i]=0;
y->len=(ln|s);
}
else copy(x,y);
}
void denom(_MIPD_ flash x,big y)
{ /* extract denominator of x */
int i,ln,ld;
mr_lentype ly;
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
if (mr_mip->ERNUM) return;
if (!mr_notint(x))
{
convert(_MIPP_ 1,y);
return;
}
ly=(x->len&MR_OBITS);
ln=(int)(ly&MR_MSK);
ld=(int)((ly>>MR_BTS)&MR_MSK);
for (i=0;i<ld;i++)
y->w[i]=x->w[ln+i];
if (x==y) for (i=0;i<ln;i++) y->w[ld+i]=0;
else for (i=ld;i<mr_lent(y);i++) y->w[i]=0;
y->len=ld;
}
#endif
unsigned int igcd(unsigned int x,unsigned int y)
{ /* integer GCD, returns GCD of x and y */
unsigned int r;
if (y==0) return x;
while ((r=x%y)!=0)
x=y,y=r;
return y;
}
unsigned long lgcd(unsigned long x,unsigned long y)
{ /* long GCD, returns GCD of x and y */
unsigned long r;
if (y==0) return x;
while ((r=x%y)!=0)
x=y,y=r;
return y;
}
unsigned int isqrt(unsigned int num,unsigned int guess)
{ /* square root of an integer */
unsigned int sqr;
unsigned int oldguess=guess;
if (num==0) return 0;
if (num<4) return 1;
for (;;)
{ /* Newtons iteration */
/* sqr=guess+(((num/guess)-guess)/2); */
sqr=((num/guess)+guess)/2;
if (sqr==guess || sqr==oldguess)
{
if (sqr*sqr>num) sqr--;
return sqr;
}
oldguess=guess;
guess=sqr;
}
}
unsigned long mr_lsqrt(unsigned long num,unsigned long guess)
{ /* square root of a long */
unsigned long sqr;
unsigned long oldguess=guess;
if (num==0) return 0;
if (num<4) return 1;
for (;;)
{ /* Newtons iteration */
/* sqr=guess+(((num/guess)-guess)/2); */
sqr=((num/guess)+guess)/2;
if (sqr==guess || sqr==oldguess)
{
if (sqr*sqr>num) sqr--;
return sqr;
}
oldguess=guess;
guess=sqr;
}
}
mr_small sgcd(mr_small x,mr_small y)
{ /* integer GCD, returns GCD of x and y */
mr_small r;
#ifdef MR_FP
mr_small dres;
#endif
if (y==(mr_small)0) return x;
while ((r=MR_REMAIN(x,y))!=(mr_small)0)
x=y,y=r;
return y;
}
/* routines to support sliding-windows exponentiation *
* in various contexts */
int mr_testbit(_MIPD_ big x,int n)
{ /* return value of n-th bit of big */
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
#ifdef MR_FP
mr_small m,a,dres;
m=mr_shiftbits((mr_small)1,n%mr_mip->lg2b);
a=x->w[n/mr_mip->lg2b];
a=MR_DIV(a,m);
if ((MR_DIV(a,2.0)*2.0) != a) return 1;
#else
if ((x->w[n/mr_mip->lg2b] & ((mr_small)1<<(n%mr_mip->lg2b))) >0) return 1;
#endif
return 0;
}
void mr_addbit(_MIPD_ big x,int n)
{ /* add 2^n to positive x - where you know that bit is zero. Use with care! */
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
mr_lentype m=n/mr_mip->lg2b;
x->w[m]+=mr_shiftbits((mr_small)1,n%mr_mip->lg2b);
if (x->len<m+1) x->len=m+1;
}
int recode(_MIPD_ big e,int t,int w,int i)
{ /* recode exponent for Comb method */
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
int j,r;
r=0;
for (j=w-1;j>=0;j--)
{
r<<=1;
r|=mr_testbit(_MIPP_ e,i+j*t);
}
return r;
}
int mr_window(_MIPD_ big x,int i,int *nbs,int * nzs,int window_size)
{ /* returns sliding window value, max. of 5 bits, *
* (Note from version 5.23 this can be changed by *
* setting parameter window_size. This can be *
* a useful space-saver) starting at i-th bit of big x. *
* nbs is number of bits processed, nzs is the number of *
* additional trailing zeros detected. Returns valid bit *
* pattern 1x..x1 with no two adjacent 0's. So 10101 *
* will return 21 with nbs=5, nzs=0. 11001 will return 3,*
* with nbs=2, nzs=2, having stopped after the first 11..*/
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
int j,r,w;
w=window_size;
/* check for leading 0 bit */
*nbs=1;
*nzs=0;
if (!mr_testbit(_MIPP_ x,i)) return 0;
/* adjust window size if not enough bits left */
if (i-w+1<0) w=i+1;
r=1;
for (j=i-1;j>i-w;j--)
{ /* accumulate bits. Abort if two 0's in a row */
(*nbs)++;
r*=2;
if (mr_testbit(_MIPP_ x,j)) r+=1;
if (r%4==0)
{ /* oops - too many zeros - shorten window */
r/=4;
*nbs-=2;
*nzs=2;
break;
}
}
if (r%2==0)
{ /* remove trailing 0 */
r/=2;
*nzs=1;
(*nbs)--;
}
return r;
}
int mr_window2(_MIPD_ big x,big y,int i,int *nbs,int *nzs)
{ /* two bit window for double exponentiation */
int r,w;
BOOL a,b,c,d;
w=2;
*nbs=1;
*nzs=0;
/* check for two leading 0's */
a=mr_testbit(_MIPP_ x,i); b=mr_testbit(_MIPP_ y,i);
if (!a && !b) return 0;
if (i<1) w=1;
if (a)
{
if (b) r=3;
else r=2;
}
else r=1;
if (w==1) return r;
c=mr_testbit(_MIPP_ x,i-1); d=mr_testbit(_MIPP_ y,i-1);
if (!c && !d)
{
*nzs=1;
return r;
}
*nbs=2;
r*=4;
if (c)
{
if (d) r+=3;
else r+=2;
}
else r+=1;
return r;
}
int mr_naf_window(_MIPD_ big x,big x3,int i,int *nbs,int *nzs,int store)
{ /* returns sliding window value, using fractional windows *
* where "store" precomputed values are precalulated and *
* stored. Scanning starts at the i-th bit of x. nbs is *
* the number of bits processed. nzs is number of *
* additional trailing zeros detected. x and x3 (which is *
* 3*x) are combined to produce the NAF (non-adjacent *
* form). So if x=11011(27) and x3 is 1010001, the LSB is *
* ignored and the value 100T0T (32-4-1=27) processed, *
* where T is -1. Note x.P = (3x-x)/2.P. This value will *
* return +7, with nbs=4 and nzs=1, having stopped after *
* the first 4 bits. If it goes too far, it must backtrack *
* Note in an NAF non-zero elements are never side by side, *
* so 10T10T won't happen. NOTE: return value n zero or *
* odd, -21 <= n <= +21 */
int nb,j,r,biggest;
/* get first bit */
nb=mr_testbit(_MIPP_ x3,i)-mr_testbit(_MIPP_ x,i);
*nbs=1;
*nzs=0;
if (nb==0) return 0;
if (i==0) return nb;
biggest=2*store-1;
if (nb>0) r=1;
else r=(-1);
for (j=i-1;j>0;j--)
{
(*nbs)++;
r*=2;
nb=mr_testbit(_MIPP_ x3,j)-mr_testbit(_MIPP_ x,j);
if (nb>0) r+=1;
if (nb<0) r-=1;
if (abs(r)>biggest) break;
}
if (r%2!=0 && j!=0)
{ /* backtrack */
if (nb>0) r=(r-1)/2;
if (nb<0) r=(r+1)/2;
(*nbs)--;
}
while (r%2==0)
{ /* remove trailing zeros */
r/=2;
(*nzs)++;
(*nbs)--;
}
return r;
}
/* Some general purpose elliptic curve stuff */
BOOL point_at_infinity(epoint *p)
{
if (p==NULL) return FALSE;
if (p->marker==MR_EPOINT_INFINITY) return TRUE;
return FALSE;
}
#ifndef MR_STATIC
epoint* epoint_init(_MIPDO_ )
{ /* initialise epoint to general point at infinity. */
epoint *p;
char *ptr;
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
if (mr_mip->ERNUM) return NULL;
MR_IN(96)
/* Create space for whole structure in one heap access */
p=(epoint *)mr_alloc(_MIPP_ mr_esize(mr_mip->nib-1),1);
ptr=(char *)p+sizeof(epoint);
p->X=mirvar_mem(_MIPP_ ptr,0);
p->Y=mirvar_mem(_MIPP_ ptr,1);
#ifndef MR_AFFINE_ONLY
p->Z=mirvar_mem(_MIPP_ ptr,2);
#endif
p->marker=MR_EPOINT_INFINITY;
MR_OUT
return p;
}
#endif
epoint* epoint_init_mem_variable(_MIPD_ char *mem,int index,int sz)
{
epoint *p;
char *ptr;
int offset,r;
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
offset=0;
r=(unsigned long)mem%MR_SL;
if (r>0) offset=MR_SL-r;
#ifndef MR_AFFINE_ONLY
if (mr_mip->coord==MR_AFFINE)
p=(epoint *)&mem[offset+index*mr_esize_a(sz)];
else
#endif
p=(epoint *)&mem[offset+index*mr_esize(sz)];
ptr=(char *)p+sizeof(epoint);
p->X=mirvar_mem_variable(ptr,0,sz);
p->Y=mirvar_mem_variable(ptr,1,sz);
#ifndef MR_AFFINE_ONLY
if (mr_mip->coord!=MR_AFFINE) p->Z=mirvar_mem_variable(ptr,2,sz);
#endif
p->marker=MR_EPOINT_INFINITY;
return p;
}
epoint* epoint_init_mem(_MIPD_ char *mem,int index)
{
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
if (mr_mip->ERNUM) return NULL;
return epoint_init_mem_variable(_MIPP_ mem,index,mr_mip->nib-1);
}
#ifndef MR_STATIC
/* allocate space for a number of epoints from the heap */
void *ecp_memalloc(_MIPD_ int num)
{
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
#ifndef MR_AFFINE_ONLY
if (mr_mip->coord==MR_AFFINE)
return mr_alloc(_MIPP_ mr_ecp_reserve_a(num,mr_mip->nib-1),1);
else
#endif
return mr_alloc(_MIPP_ mr_ecp_reserve(num,mr_mip->nib-1),1);
}
#endif
void ecp_memkill(_MIPD_ char *mem,int num)
{
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
if (mem==NULL) return;
#ifndef MR_AFFINE_ONLY
if (mr_mip->coord==MR_AFFINE)
memset(mem,0,mr_ecp_reserve_a(num,mr_mip->nib-1));
else
#endif
memset(mem,0,mr_ecp_reserve(num,mr_mip->nib-1));
#ifndef MR_STATIC
mr_free(mem);
#endif
}
#ifndef MR_STATIC
void epoint_free(epoint *p)
{ /* clean up point */
if (p==NULL) return;
zero(p->X);
zero(p->Y);
#ifndef MR_AFFINE_ONLY
if (p->marker==MR_EPOINT_GENERAL) zero(p->Z);
#endif
mr_free(p);
}
#endif