170 lines
5.4 KiB
C
170 lines
5.4 KiB
C
|
|
/***************************************************************************
|
|
*
|
|
Copyright 2013 CertiVox UK Ltd. *
|
|
*
|
|
This file is part of CertiVox MIRACL Crypto SDK. *
|
|
*
|
|
The CertiVox MIRACL Crypto SDK provides developers with an *
|
|
extensive and efficient set of cryptographic functions. *
|
|
For further information about its features and functionalities please *
|
|
refer to http://www.certivox.com *
|
|
*
|
|
* The CertiVox MIRACL Crypto SDK is free software: you can *
|
|
redistribute it and/or modify it under the terms of the *
|
|
GNU Affero General Public License as published by the *
|
|
Free Software Foundation, either version 3 of the License, *
|
|
or (at your option) any later version. *
|
|
*
|
|
* The CertiVox MIRACL Crypto SDK is distributed in the hope *
|
|
that it will be useful, but WITHOUT ANY WARRANTY; without even the *
|
|
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *
|
|
See the GNU Affero General Public License for more details. *
|
|
*
|
|
* You should have received a copy of the GNU Affero General Public *
|
|
License along with CertiVox MIRACL Crypto SDK. *
|
|
If not, see <http://www.gnu.org/licenses/>. *
|
|
*
|
|
You can be released from the requirements of the license by purchasing *
|
|
a commercial license. Buying such a license is mandatory as soon as you *
|
|
develop commercial activities involving the CertiVox MIRACL Crypto SDK *
|
|
without disclosing the source code of your own applications, or shipping *
|
|
the CertiVox MIRACL Crypto SDK with a closed source product. *
|
|
*
|
|
***************************************************************************/
|
|
/*
|
|
* MIRACL Double to Flash conversion routines - use with care
|
|
* mrdouble.c
|
|
*
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include "miracl.h"
|
|
|
|
#ifdef MR_FLASH
|
|
|
|
#define sign(x) ((x)<0? (-1) : 1)
|
|
|
|
static int dquot(_MIPD_ big x,int num)
|
|
{ /* generate c.f. for a double D */
|
|
int m;
|
|
#ifdef MR_OS_THREADS
|
|
miracl *mr_mip=get_mip();
|
|
#endif
|
|
if (num==0)
|
|
{
|
|
mr_mip->oldn=(-1);
|
|
if (mr_mip->base==0) mr_mip->db=pow(2.0,(double)MIRACL);
|
|
else mr_mip->db=(double)mr_mip->base;
|
|
if (mr_mip->D<1.0)
|
|
{
|
|
mr_mip->D=(1.0/mr_mip->D);
|
|
return (mr_mip->q=0);
|
|
}
|
|
}
|
|
else if (mr_mip->q<0 || num==mr_mip->oldn) return mr_mip->q;
|
|
mr_mip->oldn=num;
|
|
if (mr_mip->D==0.0) return (mr_mip->q=(-1));
|
|
mr_mip->D=modf(mr_mip->D,&mr_mip->n); /* n is whole number part */
|
|
m=0; /* D is fractional part (or guard digits!) */
|
|
zero(x);
|
|
while (mr_mip->n>0.0)
|
|
{ /* convert n to big */
|
|
m++;
|
|
if (m>mr_mip->nib) return (mr_mip->q=(-2));
|
|
mr_mip->p=mr_mip->n/mr_mip->db;
|
|
modf(mr_mip->p,&mr_mip->p);
|
|
x->w[m-1]=(mr_small)(mr_mip->n-mr_mip->db*mr_mip->p);
|
|
mr_mip->n=mr_mip->p;
|
|
}
|
|
x->len=m;
|
|
if (mr_mip->D>0.0) mr_mip->D=(1.0/mr_mip->D);
|
|
return (mr_mip->q=size(x));
|
|
}
|
|
|
|
void dconv(_MIPD_ double d,flash w)
|
|
{ /* convert double to rounded flash */
|
|
int s;
|
|
#ifdef MR_OS_THREADS
|
|
miracl *mr_mip=get_mip();
|
|
#endif
|
|
if (mr_mip->ERNUM) return;
|
|
|
|
MR_IN(32)
|
|
|
|
zero(w);
|
|
if (d==0.0)
|
|
{
|
|
MR_OUT
|
|
return;
|
|
}
|
|
mr_mip->D=d;
|
|
s=sign(mr_mip->D);
|
|
mr_mip->D=mr_abs(mr_mip->D);
|
|
build(_MIPP_ w,dquot);
|
|
insign(s,w);
|
|
|
|
MR_OUT
|
|
}
|
|
|
|
double fdsize(_MIPD_ flash w)
|
|
{ /* express flash number as double. */
|
|
int i,s,en,ed;
|
|
double n,d,b,BIGGEST;
|
|
#ifdef MR_OS_THREADS
|
|
miracl *mr_mip=get_mip();
|
|
#endif
|
|
if (mr_mip->ERNUM || size(w)==0) return (0.0);
|
|
|
|
MR_IN(11)
|
|
|
|
BIGGEST=pow(2.0,(double)(1<<(MR_EBITS-4)));
|
|
mr_mip->EXACT=FALSE;
|
|
n=0.0;
|
|
d=0.0;
|
|
if (mr_mip->base==0) b=pow(2.0,(double)MIRACL);
|
|
else b=(double)mr_mip->base;
|
|
numer(_MIPP_ w,mr_mip->w1);
|
|
s=exsign(mr_mip->w1);
|
|
insign(PLUS,mr_mip->w1);
|
|
en=(int)mr_mip->w1->len;
|
|
for (i=0;i<en;i++)
|
|
n=(double)mr_mip->w1->w[i]+(n/b);
|
|
denom(_MIPP_ w,mr_mip->w1);
|
|
ed=(int)mr_mip->w1->len;
|
|
for (i=0;i<ed;i++)
|
|
d=(double)mr_mip->w1->w[i]+(d/b);
|
|
n/=d;
|
|
while (en!=ed)
|
|
{
|
|
if (en>ed)
|
|
{
|
|
ed++;
|
|
if (BIGGEST/b<n)
|
|
{
|
|
mr_berror(_MIPP_ MR_ERR_DOUBLE_FAIL);
|
|
MR_OUT
|
|
return (0.0);
|
|
}
|
|
n*=b;
|
|
}
|
|
else
|
|
{
|
|
en++;
|
|
if (n<b/BIGGEST)
|
|
{
|
|
mr_berror(_MIPP_ MR_ERR_DOUBLE_FAIL);
|
|
MR_OUT
|
|
return (0.0);
|
|
}
|
|
n/=b;
|
|
}
|
|
}
|
|
n*=s;
|
|
MR_OUT
|
|
return n;
|
|
}
|
|
|
|
#endif
|
|
|