KGC_TEST/miracl/source/mrebrick.c

261 lines
7.3 KiB
C

/***************************************************************************
*
Copyright 2013 CertiVox UK Ltd. *
*
This file is part of CertiVox MIRACL Crypto SDK. *
*
The CertiVox MIRACL Crypto SDK provides developers with an *
extensive and efficient set of cryptographic functions. *
For further information about its features and functionalities please *
refer to http://www.certivox.com *
*
* The CertiVox MIRACL Crypto SDK is free software: you can *
redistribute it and/or modify it under the terms of the *
GNU Affero General Public License as published by the *
Free Software Foundation, either version 3 of the License, *
or (at your option) any later version. *
*
* The CertiVox MIRACL Crypto SDK is distributed in the hope *
that it will be useful, but WITHOUT ANY WARRANTY; without even the *
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *
See the GNU Affero General Public License for more details. *
*
* You should have received a copy of the GNU Affero General Public *
License along with CertiVox MIRACL Crypto SDK. *
If not, see <http://www.gnu.org/licenses/>. *
*
You can be released from the requirements of the license by purchasing *
a commercial license. Buying such a license is mandatory as soon as you *
develop commercial activities involving the CertiVox MIRACL Crypto SDK *
without disclosing the source code of your own applications, or shipping *
the CertiVox MIRACL Crypto SDK with a closed source product. *
*
***************************************************************************/
/*
* Module to implement Comb method for fast
* computation of x*G mod n, for fixed G and n, using precomputation.
*
* Elliptic curve version of mrbrick.c
*
* This idea can be used to substantially speed up certain phases
* of the Digital Signature Standard (ECS) for example.
*
* See "Handbook of Applied Cryptography"
*/
#include <stdlib.h>
#include "miracl.h"
#ifdef MR_STATIC
#include <string.h>
#endif
#ifndef MR_STATIC
BOOL ebrick_init(_MIPD_ ebrick *B,big x,big y,big a,big b,big n,int window,int nb)
{ /* Uses Montgomery arithmetic internally *
* (x,y) is the fixed base *
* a,b and n are parameters and modulus of the curve *
* window is the window size in bits and *
* nb is the maximum number of bits in the multiplier */
int i,j,k,t,bp,len,bptr,is;
epoint **table;
epoint *w;
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
if (nb<2 || window<1 || window>nb || mr_mip->ERNUM) return FALSE;
t=MR_ROUNDUP(nb,window);
if (t<2) return FALSE;
MR_IN(115)
#ifndef MR_ALWAYS_BINARY
if (mr_mip->base != mr_mip->base2)
{
mr_berror(_MIPP_ MR_ERR_NOT_SUPPORTED);
MR_OUT
return FALSE;
}
#endif
B->window=window;
B->max=nb;
table=(epoint **)mr_alloc(_MIPP_ (1<<window),sizeof(epoint *));
if (table==NULL)
{
mr_berror(_MIPP_ MR_ERR_OUT_OF_MEMORY);
MR_OUT
return FALSE;
}
B->a=mirvar(_MIPP_ 0);
B->b=mirvar(_MIPP_ 0);
B->n=mirvar(_MIPP_ 0);
copy(a,B->a);
copy(b,B->b);
copy(n,B->n);
ecurve_init(_MIPP_ a,b,n,MR_BEST);
w=epoint_init(_MIPPO_ );
epoint_set(_MIPP_ x,y,0,w);
table[0]=epoint_init(_MIPPO_ );
table[1]=epoint_init(_MIPPO_ );
epoint_copy(w,table[1]);
for (j=0;j<t;j++)
ecurve_double(_MIPP_ w);
k=1;
for (i=2;i<(1<<window);i++)
{
table[i]=epoint_init(_MIPPO_ );
if (i==(1<<k))
{
k++;
epoint_norm(_MIPP_ w);
epoint_copy(w,table[i]);
for (j=0;j<t;j++)
ecurve_double(_MIPP_ w);
continue;
}
bp=1;
for (j=0;j<k;j++)
{
if (i&bp)
{
is=1<<j;
ecurve_add(_MIPP_ table[is],table[i]);
}
bp<<=1;
}
epoint_norm(_MIPP_ table[i]);
}
epoint_free(w);
/* create the table */
len=n->len;
bptr=0;
B->table=(mr_small *)mr_alloc(_MIPP_ 2*len*(1<<window),sizeof(mr_small));
for (i=0;i<(1<<window);i++)
{
for (j=0;j<len;j++)
{
B->table[bptr++]=table[i]->X->w[j];
}
for (j=0;j<len;j++)
{
B->table[bptr++]=table[i]->Y->w[j];
}
epoint_free(table[i]);
}
mr_free(table);
MR_OUT
return TRUE;
}
void ebrick_end(ebrick *B)
{
mirkill(B->n);
mirkill(B->b);
mirkill(B->a);
mr_free(B->table);
}
#else
/* use precomputated table in ROM - see romaker.c to create the table, and ecdhp.c
for an example of use */
void ebrick_init(ebrick *B,const mr_small* rom,big a,big b,big n,int window,int nb)
{
B->table=rom;
B->a=a; /* just pass a pointer */
B->b=b;
B->n=n;
B->window=window; /* 2^4=16 stored values */
B->max=nb;
}
#endif
int mul_brick(_MIPD_ ebrick *B,big e,big x,big y)
{
int i,j,t,d,len,maxsize,promptr;
epoint *w,*z;
#ifdef MR_STATIC
char mem[MR_ECP_RESERVE(2)];
#else
char *mem;
#endif
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
if (size(e)<0) mr_berror(_MIPP_ MR_ERR_NEG_POWER);
t=MR_ROUNDUP(B->max,B->window);
MR_IN(116)
#ifndef MR_ALWAYS_BINARY
if (mr_mip->base != mr_mip->base2)
{
mr_berror(_MIPP_ MR_ERR_NOT_SUPPORTED);
MR_OUT
return 0;
}
#endif
if (logb2(_MIPP_ e) > B->max)
{
mr_berror(_MIPP_ MR_ERR_EXP_TOO_BIG);
MR_OUT
return 0;
}
ecurve_init(_MIPP_ B->a,B->b,B->n,MR_BEST);
#ifdef MR_STATIC
memset(mem,0,MR_ECP_RESERVE(2));
#else
mem=(char *)ecp_memalloc(_MIPP_ 2);
#endif
w=epoint_init_mem(_MIPP_ mem,0);
z=epoint_init_mem(_MIPP_ mem,1);
len=B->n->len;
maxsize=2*(1<<B->window)*len;
j=recode(_MIPP_ e,t,B->window,t-1);
if (j>0)
{
promptr=2*j*len;
init_point_from_rom(w,len,B->table,maxsize,&promptr);
}
for (i=t-2;i>=0;i--)
{
j=recode(_MIPP_ e,t,B->window,i);
ecurve_double(_MIPP_ w);
if (j>0)
{
promptr=2*j*len;
init_point_from_rom(z,len,B->table,maxsize,&promptr);
ecurve_add(_MIPP_ z,w);
}
}
d=epoint_get(_MIPP_ w,x,y);
#ifndef MR_STATIC
ecp_memkill(_MIPP_ mem,2);
#else
memset(mem,0,MR_ECP_RESERVE(2));
#endif
MR_OUT
return d;
}