261 lines
7.3 KiB
C
261 lines
7.3 KiB
C
|
|
/***************************************************************************
|
|
*
|
|
Copyright 2013 CertiVox UK Ltd. *
|
|
*
|
|
This file is part of CertiVox MIRACL Crypto SDK. *
|
|
*
|
|
The CertiVox MIRACL Crypto SDK provides developers with an *
|
|
extensive and efficient set of cryptographic functions. *
|
|
For further information about its features and functionalities please *
|
|
refer to http://www.certivox.com *
|
|
*
|
|
* The CertiVox MIRACL Crypto SDK is free software: you can *
|
|
redistribute it and/or modify it under the terms of the *
|
|
GNU Affero General Public License as published by the *
|
|
Free Software Foundation, either version 3 of the License, *
|
|
or (at your option) any later version. *
|
|
*
|
|
* The CertiVox MIRACL Crypto SDK is distributed in the hope *
|
|
that it will be useful, but WITHOUT ANY WARRANTY; without even the *
|
|
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *
|
|
See the GNU Affero General Public License for more details. *
|
|
*
|
|
* You should have received a copy of the GNU Affero General Public *
|
|
License along with CertiVox MIRACL Crypto SDK. *
|
|
If not, see <http://www.gnu.org/licenses/>. *
|
|
*
|
|
You can be released from the requirements of the license by purchasing *
|
|
a commercial license. Buying such a license is mandatory as soon as you *
|
|
develop commercial activities involving the CertiVox MIRACL Crypto SDK *
|
|
without disclosing the source code of your own applications, or shipping *
|
|
the CertiVox MIRACL Crypto SDK with a closed source product. *
|
|
*
|
|
***************************************************************************/
|
|
/*
|
|
* Module to implement Comb method for fast
|
|
* computation of x*G mod n, for fixed G and n, using precomputation.
|
|
*
|
|
* Elliptic curve version of mrbrick.c
|
|
*
|
|
* This idea can be used to substantially speed up certain phases
|
|
* of the Digital Signature Standard (ECS) for example.
|
|
*
|
|
* See "Handbook of Applied Cryptography"
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include "miracl.h"
|
|
#ifdef MR_STATIC
|
|
#include <string.h>
|
|
#endif
|
|
|
|
#ifndef MR_STATIC
|
|
|
|
BOOL ebrick_init(_MIPD_ ebrick *B,big x,big y,big a,big b,big n,int window,int nb)
|
|
{ /* Uses Montgomery arithmetic internally *
|
|
* (x,y) is the fixed base *
|
|
* a,b and n are parameters and modulus of the curve *
|
|
* window is the window size in bits and *
|
|
* nb is the maximum number of bits in the multiplier */
|
|
int i,j,k,t,bp,len,bptr,is;
|
|
epoint **table;
|
|
epoint *w;
|
|
|
|
#ifdef MR_OS_THREADS
|
|
miracl *mr_mip=get_mip();
|
|
#endif
|
|
if (nb<2 || window<1 || window>nb || mr_mip->ERNUM) return FALSE;
|
|
|
|
t=MR_ROUNDUP(nb,window);
|
|
if (t<2) return FALSE;
|
|
|
|
MR_IN(115)
|
|
|
|
#ifndef MR_ALWAYS_BINARY
|
|
if (mr_mip->base != mr_mip->base2)
|
|
{
|
|
mr_berror(_MIPP_ MR_ERR_NOT_SUPPORTED);
|
|
MR_OUT
|
|
return FALSE;
|
|
}
|
|
#endif
|
|
|
|
B->window=window;
|
|
B->max=nb;
|
|
table=(epoint **)mr_alloc(_MIPP_ (1<<window),sizeof(epoint *));
|
|
if (table==NULL)
|
|
{
|
|
mr_berror(_MIPP_ MR_ERR_OUT_OF_MEMORY);
|
|
MR_OUT
|
|
return FALSE;
|
|
}
|
|
B->a=mirvar(_MIPP_ 0);
|
|
B->b=mirvar(_MIPP_ 0);
|
|
B->n=mirvar(_MIPP_ 0);
|
|
copy(a,B->a);
|
|
copy(b,B->b);
|
|
copy(n,B->n);
|
|
|
|
ecurve_init(_MIPP_ a,b,n,MR_BEST);
|
|
w=epoint_init(_MIPPO_ );
|
|
epoint_set(_MIPP_ x,y,0,w);
|
|
table[0]=epoint_init(_MIPPO_ );
|
|
table[1]=epoint_init(_MIPPO_ );
|
|
epoint_copy(w,table[1]);
|
|
for (j=0;j<t;j++)
|
|
ecurve_double(_MIPP_ w);
|
|
k=1;
|
|
for (i=2;i<(1<<window);i++)
|
|
{
|
|
table[i]=epoint_init(_MIPPO_ );
|
|
if (i==(1<<k))
|
|
{
|
|
k++;
|
|
epoint_norm(_MIPP_ w);
|
|
epoint_copy(w,table[i]);
|
|
|
|
for (j=0;j<t;j++)
|
|
ecurve_double(_MIPP_ w);
|
|
continue;
|
|
}
|
|
bp=1;
|
|
for (j=0;j<k;j++)
|
|
{
|
|
if (i&bp)
|
|
{
|
|
is=1<<j;
|
|
ecurve_add(_MIPP_ table[is],table[i]);
|
|
}
|
|
bp<<=1;
|
|
}
|
|
epoint_norm(_MIPP_ table[i]);
|
|
}
|
|
epoint_free(w);
|
|
|
|
/* create the table */
|
|
|
|
len=n->len;
|
|
bptr=0;
|
|
B->table=(mr_small *)mr_alloc(_MIPP_ 2*len*(1<<window),sizeof(mr_small));
|
|
|
|
for (i=0;i<(1<<window);i++)
|
|
{
|
|
for (j=0;j<len;j++)
|
|
{
|
|
B->table[bptr++]=table[i]->X->w[j];
|
|
}
|
|
for (j=0;j<len;j++)
|
|
{
|
|
B->table[bptr++]=table[i]->Y->w[j];
|
|
}
|
|
|
|
epoint_free(table[i]);
|
|
}
|
|
|
|
mr_free(table);
|
|
|
|
MR_OUT
|
|
return TRUE;
|
|
}
|
|
|
|
void ebrick_end(ebrick *B)
|
|
{
|
|
mirkill(B->n);
|
|
mirkill(B->b);
|
|
mirkill(B->a);
|
|
mr_free(B->table);
|
|
}
|
|
|
|
#else
|
|
|
|
/* use precomputated table in ROM - see romaker.c to create the table, and ecdhp.c
|
|
for an example of use */
|
|
|
|
void ebrick_init(ebrick *B,const mr_small* rom,big a,big b,big n,int window,int nb)
|
|
{
|
|
B->table=rom;
|
|
B->a=a; /* just pass a pointer */
|
|
B->b=b;
|
|
B->n=n;
|
|
B->window=window; /* 2^4=16 stored values */
|
|
B->max=nb;
|
|
}
|
|
|
|
#endif
|
|
|
|
int mul_brick(_MIPD_ ebrick *B,big e,big x,big y)
|
|
{
|
|
int i,j,t,d,len,maxsize,promptr;
|
|
epoint *w,*z;
|
|
|
|
#ifdef MR_STATIC
|
|
char mem[MR_ECP_RESERVE(2)];
|
|
#else
|
|
char *mem;
|
|
#endif
|
|
#ifdef MR_OS_THREADS
|
|
miracl *mr_mip=get_mip();
|
|
#endif
|
|
|
|
if (size(e)<0) mr_berror(_MIPP_ MR_ERR_NEG_POWER);
|
|
t=MR_ROUNDUP(B->max,B->window);
|
|
|
|
MR_IN(116)
|
|
|
|
#ifndef MR_ALWAYS_BINARY
|
|
if (mr_mip->base != mr_mip->base2)
|
|
{
|
|
mr_berror(_MIPP_ MR_ERR_NOT_SUPPORTED);
|
|
MR_OUT
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
if (logb2(_MIPP_ e) > B->max)
|
|
{
|
|
mr_berror(_MIPP_ MR_ERR_EXP_TOO_BIG);
|
|
MR_OUT
|
|
return 0;
|
|
}
|
|
|
|
ecurve_init(_MIPP_ B->a,B->b,B->n,MR_BEST);
|
|
#ifdef MR_STATIC
|
|
memset(mem,0,MR_ECP_RESERVE(2));
|
|
#else
|
|
mem=(char *)ecp_memalloc(_MIPP_ 2);
|
|
#endif
|
|
w=epoint_init_mem(_MIPP_ mem,0);
|
|
z=epoint_init_mem(_MIPP_ mem,1);
|
|
|
|
len=B->n->len;
|
|
maxsize=2*(1<<B->window)*len;
|
|
|
|
j=recode(_MIPP_ e,t,B->window,t-1);
|
|
if (j>0)
|
|
{
|
|
promptr=2*j*len;
|
|
init_point_from_rom(w,len,B->table,maxsize,&promptr);
|
|
}
|
|
for (i=t-2;i>=0;i--)
|
|
{
|
|
j=recode(_MIPP_ e,t,B->window,i);
|
|
ecurve_double(_MIPP_ w);
|
|
if (j>0)
|
|
{
|
|
promptr=2*j*len;
|
|
init_point_from_rom(z,len,B->table,maxsize,&promptr);
|
|
ecurve_add(_MIPP_ z,w);
|
|
}
|
|
}
|
|
|
|
d=epoint_get(_MIPP_ w,x,y);
|
|
#ifndef MR_STATIC
|
|
ecp_memkill(_MIPP_ mem,2);
|
|
#else
|
|
memset(mem,0,MR_ECP_RESERVE(2));
|
|
#endif
|
|
MR_OUT
|
|
return d;
|
|
}
|