KGC_TEST/miracl/source/pk-demo.cpp

212 lines
5.4 KiB
C++

/*
* Example program demonstrates 1024 bit Diffie-Hellman, El Gamal and RSA
* and 168 bit Elliptic Curve Diffie-Hellman
*
* Requires: big.cpp ecn.cpp
*/
#include <iostream>
#include "ecn.h"
#include "big.h"
#include <ctime>
//using namespace std;
/* large 1024 bit prime p for which (p-1)/2 is also prime */
char *primetext=(char *)
"155315526351482395991155996351231807220169644828378937433223838972232518351958838087073321845624756550146945246003790108045940383194773439496051917019892370102341378990113959561895891019716873290512815434724157588460613638202017020672756091067223336194394910765309830876066246480156617492164140095427773547319";
/* NIST p192 bit elliptic curve prime 2#192-2#64-1 */
char *ecp=(char *)"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFF";
/* elliptic curve parameter B */
char *ecb=(char *)"64210519E59C80E70FA7E9AB72243049FEB8DEECC146B9B1";
/* elliptic curve - point of prime order (x,y) */
char *ecx=(char *)"188DA80EB03090F67CBF20EB43A18800F4FF0AFD82FF1012";
char *ecy=(char *)"07192B95FFC8DA78631011ED6B24CDD573F977A11E794811";
char *text=(char *)"MIRACL - Best multi-precision library in the World!\n";
#ifndef MR_NOFULLWIDTH
Miracl precision(50,0);
#else
Miracl precision(50,MAXBASE);
#endif
// If MR_STATIC is defined in mirdef.h, it is assumed to be 100
//Miracl precision(120,(1<<26));
int main()
{
int ia,ib;
time_t seed;
Big a,b,p,q,n,phi,pa,pb,key,e,d,m,c,x,y,k,inv,t;
Big primes[2],pm[2];
ECn g,ea,eb;
miracl *mip=&precision;
time(&seed);
irand((long)seed); /* change parameter for different values */
cout << "First Diffie-Hellman Key exchange .... " << endl;
p=primetext;
/* offline calculations could be done quicker using Comb method
- See brick.cpp. Note use of "truncated exponent" of 160 bits -
could be output from hash function SHA (see mrshs.c) */
cout << "\nAlice's offline calculation" << endl;
a=rand(160,2);
/* 3 generates the prime sub-group of size (p-1)/2 */
pa=pow(3,a,p); // pa =3^a mod p
cout << "Bob's offline calculation" << endl;
b=rand(160,2);
pb=pow(3,b,p);
cout << "Alice calculates Key=" << endl;
key=pow(pb,a,p);
cout << key << endl;
cout << "Bob calculates Key=" << endl;
key=pow(pa,b,p);
cout << key << endl;
cout << "Alice and Bob's keys should be the same!" << endl;
/*
Now Elliptic Curve version of the above.
Curve is y^2=x^3+Ax+B mod p, where A=-3, B and p as above
"Primitive root" is the point (x,y) above, which is of large prime order q.
In this case actually
q=FFFFFFFFFFFFFFFFFFFFFFFF99DEF836146BC9B1B4D22831
*/
cout << "\nLets try that again using elliptic curves...." << endl;
a=-3;
mip->IOBASE=16;
b=ecb;
p=ecp;
ecurve(a,b,p,MR_BEST); // means use PROJECTIVE if possible, else AFFINE coordinates
x=ecx;
y=ecy;
mip->IOBASE=10;
g=ECn(x,y);
ea=eb=g;
cout << "Alice's offline calculation" << endl;
a=rand(160,2);
ea*=a;
ia=ea.get(pa); /* <ia,pa> is compressed form of public key */
cout << "Bob's offline calculation" << endl;
b=rand(160,2);
eb*=b;
ib=eb.get(pb); /* <ib,pb> is compressed form of public key */
cout << "Alice calculates Key=" << endl;
eb=ECn(pb,ib); /* decompress eb */
eb*=a;
eb.get(key);
cout << key << endl;
cout << "Bob calculates Key=" << endl;
ea=ECn(pa,ia); /* decompress ea */
ea*=b;
ea.get(key);
cout << key << endl;
cout << "Alice and Bob's keys should be the same! (but much smaller)" << endl;
/* El Gamal's Method */
cout << "\nTesting El Gamal's public key method" << endl;
p=primetext;
x=rand(160,2);
y=pow(3,x,p);
do
{
k=rand(160,2);
} while (gcd(p-1,k)!=1);
mip->IOBASE=256;
a=pow(3,k,p);
b=modmult(pow(y,k,p),(Big)text,p);
mip->IOBASE=10;
cout << "Ciphertext= \n" << a << "\n" << b << endl;
m=modmult(b,pow(a,p-1-x,p),p);
mip->IOBASE=256;
cout << "Plaintext= \n" << m << endl;
mip->IOBASE=10;
/* RSA. Generate primes p & q. Use e=65537, and find d=1/e mod (p-1)(q-1) */
cout << "\nNow generating 512-bit random primes p and q" << endl;
for(;;)
{
p=rand(512,2); // random 512 bit number
if (p%2==0) p+=1;
while (!prime(p)) p+=2;
q=rand(512,2);
if (q%2==0) q+=1;
while (!prime(q)) q+=2;
n=p*q;
e=65537;
phi=(p-1)*(q-1);
if (gcd(e,phi)!=1) continue;
d=inverse(e,phi);
break;
}
cout << p << endl;
cout << q << endl;
cout << "n = p.q = \n";
cout << n << endl;
/* set up for chinese remainder thereom */
// primes[0]=p;
// primes[1]=q;
// Crt chinese(2,primes);
inv=inverse(p,q); // precalculate this
mip->IOBASE=256;
cout << "Encrypting test string" << endl;
c=pow((Big)text,e,n); // c=m^e mod n
mip->IOBASE=10;
cout << "Ciphertext= \n";
cout << c << endl;
cout << "Decrypting test string" << endl;
pm[0]=pow(c%p,d%(p-1),p); /* get result mod p */
pm[1]=pow(c%q,d%(q-1),q); /* get result mod q */
t=modmult(inv,pm[1]-pm[0],q); // use CRT in simple way, as only 2 primes
m=t*p+pm[0];
// m=chinese.eval(pm); /* combine them using CRT */
mip->IOBASE=256;
cout << "Plaintext= \n";
cout << m << endl;
return 0;
}