172 lines
4.4 KiB
C++
172 lines
4.4 KiB
C++
/*
|
|
* Program to factor big numbers using Pollards (p-1) method.
|
|
* Works when for some prime divisor p of n, p-1 has only
|
|
* small factors.
|
|
* See "Speeding the Pollard and Elliptic Curve Methods"
|
|
* by Peter Montgomery, Math. Comp. Vol. 48 Jan. 1987 pp243-264
|
|
*
|
|
* Requires: big.cpp zzn.cpp
|
|
*/
|
|
|
|
#include <iostream>
|
|
#include <iomanip>
|
|
#include "zzn.h"
|
|
|
|
using namespace std;
|
|
|
|
#define LIMIT1 10000 /* must be int, and > MULT/2 */
|
|
#define LIMIT2 2000000L /* may be long */
|
|
#define MULT 2310 /* must be int, product of small primes 2.3.. */
|
|
#define NEXT 13 /* next small prime */
|
|
|
|
Miracl precision=50; /* number of ints per ZZn */
|
|
|
|
miracl *mip;
|
|
static long p;
|
|
static int iv;
|
|
static ZZn b,bw,bvw,bd,q,bu[1+MULT/2];
|
|
static BOOL cp[1+MULT/2],Plus[1+MULT/2],Minus[1+MULT/2];
|
|
|
|
void marks(long start)
|
|
{ /* mark non-primes in this interval. Note *
|
|
* that those < NEXT are dealt with already */
|
|
int i,pr,j,k;
|
|
for (j=1;j<=MULT/2;j+=2) Plus[j]=Minus[j]=TRUE;
|
|
for (i=0;;i++)
|
|
{ /* mark in both directions */
|
|
pr=mip->PRIMES[i];
|
|
if (pr<NEXT) continue;
|
|
if ((long)pr*pr>start) break;
|
|
k=pr-start%pr;
|
|
for (j=k;j<=MULT/2;j+=pr)
|
|
Plus[j]=FALSE;
|
|
k=start%pr;
|
|
for (j=k;j<=MULT/2;j+=pr)
|
|
Minus[j]=FALSE;
|
|
}
|
|
}
|
|
|
|
|
|
void next_phase()
|
|
{ /* now changing gear */
|
|
ZZn bp,t;
|
|
long interval;
|
|
bw=pow(b,8);
|
|
t=1;
|
|
bp=bu[1]=b;
|
|
for (int m=3;m<=MULT/2;m+=2)
|
|
{ /* store bu[m] = b^(m*m) */
|
|
t*=bw;
|
|
bp*=t;
|
|
if (cp[m]) bu[m]=bp;
|
|
}
|
|
t=pow(b,MULT);
|
|
t=pow(t,MULT);
|
|
bd=t*t; /* bd = b^(2*MULT*MULT) */
|
|
iv=p/MULT;
|
|
if (p%MULT>MULT/2) iv++;
|
|
interval=(long)iv*MULT;
|
|
p=interval+1;
|
|
marks(interval);
|
|
bw=pow(t,(2*iv-1));
|
|
bvw=pow(t,iv);
|
|
bvw=pow(bvw,iv); /* bvw = b^(MULT*MULT*iv*iv) */
|
|
q=bvw-bu[p%MULT];
|
|
}
|
|
|
|
int giant_step()
|
|
{ /* increment giant step */
|
|
long interval;
|
|
iv++;
|
|
interval=(long)iv*MULT;
|
|
p=interval+1;
|
|
marks(interval);
|
|
bw*=bd;
|
|
bvw*=bw;
|
|
return 1;
|
|
}
|
|
|
|
int main()
|
|
{ /* factoring program using Pollards (p-1) method */
|
|
int phase,m,pos,btch;
|
|
long i,pa;
|
|
Big n,t;
|
|
mip=&precision;
|
|
gprime(LIMIT1);
|
|
for (m=1;m<=MULT/2;m+=2)
|
|
if (igcd(MULT,m)==1) cp[m]=TRUE;
|
|
else cp[m]=FALSE;
|
|
cout << "input number to be factored\n";
|
|
cin >> n;
|
|
if (prime(n))
|
|
{
|
|
cout << "this number is prime!\n";
|
|
return 0;
|
|
}
|
|
modulo(n); /* do all arithmetic mod n */
|
|
phase=1;
|
|
p=0;
|
|
btch=50;
|
|
i=0;
|
|
b=2;
|
|
cout << "phase 1 - trying all primes less than " << LIMIT1;
|
|
cout << "\nprime= " << setw(8) << p;
|
|
forever
|
|
{ /* main loop */
|
|
if (phase==1)
|
|
{ /* looking for all factors of (p-1) < LIMIT1 */
|
|
p=mip->PRIMES[i];
|
|
if (mip->PRIMES[i+1]==0)
|
|
{
|
|
phase=2;
|
|
cout << "\nphase 2 - trying last prime less than ";
|
|
cout << LIMIT2 << "\nprime= " << setw(8) << p;
|
|
next_phase();
|
|
btch*=100;
|
|
i++;
|
|
continue;
|
|
}
|
|
pa=p;
|
|
while ((LIMIT1/p) > pa) pa*=p;
|
|
b=pow(b,(int)pa); /* b = b^pa mod n */
|
|
q=b-1;
|
|
}
|
|
else
|
|
{ /* looking for last prime factor of (p-1) < LIMIT2 */
|
|
p+=2;
|
|
pos=p%MULT;
|
|
if (pos>MULT/2) pos=giant_step();
|
|
|
|
/* if neither interval+/-pos is prime, don't bother */
|
|
if (!Plus[pos] && !Minus[pos]) continue;
|
|
if (!cp[pos]) continue;
|
|
q*=(bvw-bu[pos]); /* batch gcd's in q */
|
|
}
|
|
if (i++%btch==0)
|
|
{ /* try for a solution */
|
|
cout << "\b\b\b\b\b\b\b\b" << setw(8) << p << flush;
|
|
t=gcd((Big)q,n);
|
|
if (t==1)
|
|
{
|
|
if (p>LIMIT2) break;
|
|
else continue;
|
|
}
|
|
if (t==n)
|
|
{
|
|
cout << "\ndegenerate case";
|
|
break;
|
|
}
|
|
if (prime(t)) cout << "\nprime factor " << t;
|
|
else cout << "\ncomposite factor " << t;
|
|
n/=t;
|
|
if (prime(n)) cout << "\nprime factor " << n;
|
|
else cout << "\ncomposite factor " << n;
|
|
cout << endl;
|
|
return 0;
|
|
}
|
|
}
|
|
cout << "\nfailed to factor\n";
|
|
return 0;
|
|
}
|
|
|