KGC_TEST/miracl/source/williams.cpp

182 lines
4.8 KiB
C++

/*
* Program to factor big numbers using Williams (p+1) method.
* Works when for some prime divisor p of n, p+1 has only
* small factors.
* See "Speeding the Pollard and Elliptic Curve Methods"
* by Peter Montgomery, Math. Comp. Vol. 48. Jan. 1987 pp243-264
*
* Requires: big.cpp zzn.cpp
*
*/
#include <iostream>
#include <iomanip>
#include "zzn.h"
using namespace std;
#define LIMIT1 10000 /* must be int, and > MULT/2 */
#define LIMIT2 500000L /* may be long */
#define NEXT 13 /* next small prime */
#define MULT 2310 /* must be int, product of small primes 2.3.. */
#define NTRYS 3 /* number of attempts */
Miracl precision=50; /* number of ints per ZZn */
miracl *mip;
static long p;
static int iv;
static ZZn b,q,fvw,fd,fp,fn,fu[1+MULT/2];
static BOOL cp[1+MULT/2],Plus[1+MULT/2],Minus[1+MULT/2];
void marks(long start)
{ /* mark non-primes in this interval. Note *
* that those < NEXT are dealt with already */
int i,pr,j,k;
for (j=1;j<=MULT/2;j+=2) Plus[j]=Minus[j]=TRUE;
for (i=0;;i++)
{ /* mark in both directions */
pr=mip->PRIMES[i];
if (pr<NEXT) continue;
if ((long)pr*pr>start) break;
k=pr-start%pr;
for (j=k;j<=MULT/2;j+=pr)
Plus[j]=FALSE;
k=start%pr;
for (j=k;j<=MULT/2;j+=pr)
Minus[j]=FALSE;
}
}
void next_phase()
{ /* now change gear */
ZZn t;
long interval;
fp=fu[1]=b;
fd=b*b-2;
fn=fd*b-b;
for (int m=5;m<=MULT/2;m+=2)
{ /* store fu[m] = Vm(b) */
t=fn*fd-fp;
fp=fn;
fn=t;
if (!cp[m]) continue;
fu[m]=t;
}
fd=luc(b,MULT);
iv=p/MULT;
if (p%MULT>MULT/2) iv++;
interval=(long)iv*MULT;
p=interval+1;
marks(interval);
fvw=luc(fd,iv,&fp);
q=fvw-fu[p%MULT];
}
int giant_step()
{ /* increment giant step */
long interval;
ZZn t;
iv++;
interval=(long)iv*MULT;
p=interval+1;
marks(interval);
t=fvw;
fvw=fvw*fd-fp;
fp=t;
return 1;
}
int main()
{ /* factoring program using Williams (p+1) method */
int k,phase,m,nt,pos,btch;
long i,pa;
Big n,t;
mip=&precision;
gprime(LIMIT1);
for (m=1;m<=MULT/2;m+=2)
if (igcd(MULT,m)==1) cp[m]=TRUE;
else cp[m]=FALSE;
cout << "input number to be factored\n";
cin >> n;
if (prime(n))
{
cout << "this number is prime!\n";
return 0;
}
modulo(n); /* do all arithmetic mod n */
for (nt=0,k=3;k<10;k++)
{ /* try more than once for p+1 condition (may be p-1) */
b=k; /* try b=3,4,5.. */
nt++;
phase=1;
p=0;
btch=50;
i=0;
cout << "phase 1 - trying all primes less than " << LIMIT1;
cout << "\nprime= " << setw(8) << p;
forever
{ /* main loop */
if (phase==1)
{ /* looking for all factors of p+1 < LIMIT1 */
p=mip->PRIMES[i];
if (mip->PRIMES[i+1]==0)
{ /* now change gear */
phase=2;
cout << "\nphase 2 - trying last prime less than ";
cout << LIMIT2 << "\nprime= " << setw(8) << p;
next_phase();
btch*=100;
i++;
continue;
}
pa=p;
while ((LIMIT1/p) > pa) pa*=p;
q=luc(b,(int)pa);
b=q;
q-=2;
}
else
{ /* looking for last large prime factor of (p+1) */
p+=2;
pos=p%MULT;
if (pos>MULT/2) pos=giant_step();
if (!cp[pos]) continue;
/* if neither interval+/-pos is prime, don't bother */
if (!Plus[pos] && !Minus[pos]) continue;
q*=(fvw-fu[pos]); /* batching gcds */
}
if (i++%btch==0)
{ /* try for a solution */
cout << "\b\b\b\b\b\b\b\b" << setw(8) << p << flush;
t=gcd(q,n);
if (t==1)
{
if (p>LIMIT2) break;
else continue;
}
if (t==n)
{
cout << "\ndegenerate case";
break;
}
if (prime(t)) cout << "\nprime factor " << t;
else cout << "\ncomposite factor " << t;
n/=t;
if (prime(n)) cout << "\nprime factor " << n;
else cout << "\ncomposite factor " << n;
cout << endl;
return 0;
}
}
if (nt>=NTRYS) break;
cout << "\ntrying again\n";
}
cout << "\nfailed to factor\n";
return 0;
}