193 lines
5.9 KiB
C++
193 lines
5.9 KiB
C++
|
|
/***************************************************************************
|
|
*
|
|
Copyright 2013 CertiVox UK Ltd. *
|
|
*
|
|
This file is part of CertiVox MIRACL Crypto SDK. *
|
|
*
|
|
The CertiVox MIRACL Crypto SDK provides developers with an *
|
|
extensive and efficient set of cryptographic functions. *
|
|
For further information about its features and functionalities please *
|
|
refer to http://www.certivox.com *
|
|
*
|
|
* The CertiVox MIRACL Crypto SDK is free software: you can *
|
|
redistribute it and/or modify it under the terms of the *
|
|
GNU Affero General Public License as published by the *
|
|
Free Software Foundation, either version 3 of the License, *
|
|
or (at your option) any later version. *
|
|
*
|
|
* The CertiVox MIRACL Crypto SDK is distributed in the hope *
|
|
that it will be useful, but WITHOUT ANY WARRANTY; without even the *
|
|
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *
|
|
See the GNU Affero General Public License for more details. *
|
|
*
|
|
* You should have received a copy of the GNU Affero General Public *
|
|
License along with CertiVox MIRACL Crypto SDK. *
|
|
If not, see <http://www.gnu.org/licenses/>. *
|
|
*
|
|
You can be released from the requirements of the license by purchasing *
|
|
a commercial license. Buying such a license is mandatory as soon as you *
|
|
develop commercial activities involving the CertiVox MIRACL Crypto SDK *
|
|
without disclosing the source code of your own applications, or shipping *
|
|
the CertiVox MIRACL Crypto SDK with a closed source product. *
|
|
*
|
|
***************************************************************************/
|
|
/*
|
|
*
|
|
* MIRACL C++ functions zzn.cpp
|
|
*
|
|
* AUTHOR : M. Scott
|
|
*
|
|
* PURPOSE : Implementation of class ZZn functions using Montgomery
|
|
* representation
|
|
* NOTE : Must be used in conjunction with big.h and big.cpp
|
|
*
|
|
*/
|
|
|
|
#include "zzn.h"
|
|
|
|
big ZZn::getzzn(void) const
|
|
{ return fn;}
|
|
|
|
ZZn& ZZn::operator/=(int i)
|
|
{
|
|
if (i==1) return *this;
|
|
if (i==2)
|
|
{ // make a special effort... modulus is odd
|
|
nres_div2(fn,fn);
|
|
return *this;
|
|
}
|
|
ZZn x=i;
|
|
nres_moddiv(fn,x.fn,fn);
|
|
return *this;
|
|
}
|
|
|
|
BOOL ZZn::iszero() const
|
|
{ if (size(fn)==0) return TRUE; return FALSE;}
|
|
|
|
ZZn operator-(const ZZn& b)
|
|
{ZZn x=b; nres_negate(x.fn,x.fn); return x;}
|
|
|
|
ZZn operator+(const ZZn& b,int i)
|
|
{ZZn abi=b; abi+=i; return abi;}
|
|
ZZn operator+(int i, const ZZn& b)
|
|
{ZZn aib=b; aib+=i; return aib;}
|
|
ZZn operator+(const ZZn& b1, const ZZn& b2)
|
|
{ZZn abb=b1; abb+=b2; return abb;}
|
|
|
|
ZZn operator-(const ZZn& b, int i)
|
|
{ZZn mbi=b; mbi-=i; return mbi;}
|
|
ZZn operator-(int i, const ZZn& b)
|
|
{ZZn mib=i; mib-=b; return mib;}
|
|
ZZn operator-(const ZZn& b1, const ZZn& b2)
|
|
{ZZn mbb=b1; mbb-=b2; return mbb;}
|
|
|
|
ZZn operator*(const ZZn& b,int i)
|
|
{ZZn xbb=b; xbb*=i; return xbb;}
|
|
ZZn operator*(int i, const ZZn& b)
|
|
{ZZn xbb=b; xbb*=i; return xbb;}
|
|
ZZn operator*(const ZZn& b1, const ZZn& b2)
|
|
{ZZn xbb=b1; xbb*=b2; return xbb;}
|
|
|
|
ZZn operator/(const ZZn& b1, int i)
|
|
{ZZn z=b1; z/=i; return z; }
|
|
|
|
ZZn operator/(int i, const ZZn& b2)
|
|
{ZZn z=i; nres_moddiv(z.fn,b2.fn,z.fn); return z;}
|
|
ZZn operator/(const ZZn& b1, const ZZn& b2)
|
|
{ZZn z=b1; z/=b2; return z;}
|
|
|
|
ZZn pow( const ZZn& b1, const Big& b2)
|
|
{ZZn z; nres_powmod(b1.fn,b2.getbig(),z.fn);return z;}
|
|
|
|
ZZn pow( const ZZn& b,int i)
|
|
{ZZn z; Big ib=i; nres_powmod(b.fn,ib.getbig(),z.fn); return z;}
|
|
|
|
ZZn pow( const ZZn& b1, const Big& b2, const ZZn& b3,const Big& b4)
|
|
{ZZn z; nres_powmod2(b1.fn,b2.getbig(),b3.fn,b4.getbig(),z.fn); return z;}
|
|
|
|
int jacobi(const ZZn& x)
|
|
{redc(x.fn,get_mip()->w1); return jack(get_mip()->w1,get_mip()->modulus); }
|
|
|
|
#ifndef MR_NO_RAND
|
|
ZZn randn(void)
|
|
{ZZn z; bigrand(get_mip()->modulus,z.fn); return z;}
|
|
#endif
|
|
BOOL qr(const ZZn& x)
|
|
{redc(x.fn,get_mip()->w1); if (jack(get_mip()->w1,get_mip()->modulus)==1) return TRUE; return FALSE; }
|
|
|
|
BOOL qnr(const ZZn& x)
|
|
{redc(x.fn,get_mip()->w1); if (jack(get_mip()->w1,get_mip()->modulus)==-1) return TRUE; return FALSE;}
|
|
|
|
ZZn one(void)
|
|
{
|
|
ZZn w;
|
|
w=get_mip()->one;
|
|
return w;
|
|
}
|
|
|
|
ZZn getA(void)
|
|
{
|
|
ZZn w;
|
|
if (get_mip()->Asize<MR_TOOBIG) w=get_mip()->Asize;
|
|
else w=get_mip()->A;
|
|
return w;
|
|
}
|
|
|
|
ZZn getB(void)
|
|
{
|
|
ZZn w;
|
|
if (get_mip()->Bsize<MR_TOOBIG) w=get_mip()->Bsize;
|
|
else w=get_mip()->B;
|
|
return w;
|
|
}
|
|
|
|
#ifndef MR_STATIC
|
|
|
|
ZZn pow(int n,ZZn *a,Big *b)
|
|
{
|
|
ZZn z;
|
|
int i;
|
|
big *x=(big *)mr_alloc(n,sizeof(big));
|
|
big *y=(big *)mr_alloc(n,sizeof(big));
|
|
for (i=0;i<n;i++)
|
|
{
|
|
x[i]=a[i].fn;
|
|
y[i]=b[i].getbig();
|
|
}
|
|
nres_powmodn(n,x,y,z.fn);
|
|
|
|
mr_free(y); mr_free(x);
|
|
return z;
|
|
}
|
|
|
|
#endif
|
|
|
|
// fast ZZn2 powering using lucas functions..
|
|
|
|
ZZn powl(const ZZn& x,const Big& k)
|
|
{
|
|
return luc(2*x,k)/2;
|
|
}
|
|
|
|
//ZZn luc( const ZZn& b1, const Big& b2, ZZn *b3)
|
|
//{ZZn z; if (b3!=NULL) nres_lucas(b1.fn,b2.getbig(),b3->fn,z.fn);
|
|
// else nres_lucas(b1.fn,b2.getbig(),z.fn,z.fn);
|
|
// return z;}
|
|
|
|
|
|
ZZn sqrt(const ZZn& b)
|
|
{ZZn z; nres_sqroot(b.fn,z.fn); return z;}
|
|
|
|
#ifndef MR_NO_STANDARD_IO
|
|
|
|
ostream& operator<<(ostream& s,const ZZn& xx)
|
|
{
|
|
ZZn b=xx;
|
|
Big x=(Big)b;
|
|
s << x;
|
|
return s;
|
|
}
|
|
|
|
#endif
|