KGC_TEST/miracl/source/curve/pairing/ake4fsta.cpp

410 lines
8.1 KiB
C++

/*
Scott's AKE Client/Server testbed
See http://eprint.iacr.org/2002/164
Compile as
cl /O2 /GX /DZZNS=8 ake4fsta.cpp zzn4.cpp zzn2.cpp ecn2.cpp big.cpp zzn.cpp ecn.cpp miracl.lib
Fastest using COMBA build for 256-bit mod-mul
Freeman-Scott-Teske Curve - Ate pairing
The file nk4.ecs is required
Security is G160/F1024 (160-bit group, 1024-bit field)
Modified to prevent sub-group confinement attack
NOTE: assumes p = 5 mod 8, p is 256-bits
**** NEW **** Based on the observation by R. Granger and D. Page and N.P. Smart in "High Security
Pairing-Based Cryptography Revisited" that multi-exponentiation can be used for the final exponentiation
of the Tate pairing, we suggest the Power Pairing, which calculates E(P,Q,e) = e(P,Q)^e, where the
exponentiation by e is basically for free, as it can be folded into the multi-exponentiation.
**** NEW **** ATE pairing implementation - see The Eta Pairing revisited by Hess, Smart and Vercauteren
*/
#include <iostream>
#include <fstream>
#include <string.h>
#include "ecn.h"
#include <ctime>
#include "ecn2.h"
#include "zzn4.h"
using namespace std;
Miracl precision(16,0);
// Using SHA-1 as basic hash algorithm
#define HASH_LEN 20
//
// Define one or the other of these
//
// Which is faster depends on the I/M ratio - See imratio.c
// Roughly if I/M ratio > 16 use PROJECTIVE, otherwise use AFFINE
//
// This program works with AFFINE only..
#define AFFINE
//
// Ate Pairing Code
//
// Extract ECn point in internal ZZn format
//
void extract(ECn& A,ZZn& x,ZZn& y)
{
x=(A.get_point())->X;
y=(A.get_point())->Y;
}
//
// Get x/i^2, y/i^4, where i is 4th root of -2
//
void untwist(ECn2& P,ZZn2& U,ZZn2& V)
{
P.get(U,V);
U=-tx(U)/2;
V=-V/2;
}
//
// Line from A to destination C. Let A=(x,y)
// Line Y-slope.X-c=0, through A, so intercept c=y-slope.x
// Line Y-slope.X-y+slope.x = (Y-y)-slope.(X-x) = 0
// Now evaluate at Q -> return (Qy-y)-slope.(Qx-x)
//
ZZn4 line(ECn2& A,ZZn2& lam,ZZn& Qx,ZZn& Qy)
{
ZZn4 w;
ZZn2 x,y,z,t;
untwist(A,x,y);
w.set(ZZn2(0,Qy),tx(y)-lam*(x-Qx));
return w;
}
//
// Add A=A+B (or A=A+A)
// Bump up num
//
ZZn4 g(ECn2& A,ECn2& B,ZZn& Qx,ZZn& Qy)
{
ZZn2 lam;
ECn2 P=A;
// Evaluate line from A
A.add(B,lam);
if (A.iszero()) return (ZZn4)1;
//cout << "lam= " << lam << endl;
return line(P,lam,Qx,Qy);
}
//
// Ate Pairing - note denominator elimination has been applied
//
// P is a point of order q. Q(x,y) is a point of order m.q.
// Note that P is a point on the curve over Fp, Q(x,y) a point on the
// extension field Fp^2
//
// New! Power Pairing calculates E(P,Q,e) = e(P,Q)^e at no extra cost!
//
BOOL power_pairing(ECn2& P,ECn Q,Big& T,Big *cf,ZZn2 &Fr,Big &e,Big q,ZZn2& r)
{
int i,nb;
ECn2 A;
ZZn4 w,res,a[2];
ZZn Qx,Qy;
Big carry,ex[2],p=get_modulus();
extract(Q,Qx,Qy);
res=1;
/* Left to right method */
A=P;
nb=bits(T);
for (i=nb-2;i>=0;i--)
{
res*=res;
res*=g(A,A,Qx,Qy);
if (bit(T,i))
res*=g(A,P,Qx,Qy);
}
// if (!A.iszero() || res.iszero()) return FALSE;
w=res;
w.powq(Fr); w.powq(Fr); // ^(p^2-1)
res=w/res;
res.mark_as_unitary();
if (e.isone())
{
ex[0]=cf[0];
ex[1]=cf[1];
}
else
{ // cf *= e
carry=mad(cf[1],e,(Big)0,p,ex[1]);
mad(cf[0],e,carry,p,ex[0]);
}
a[0]=a[1]=res;
a[0].powq(Fr);
res=pow(2,a,ex);
r=real(res); // compression
if (r.isunity()) return FALSE;
return TRUE;
}
//
// Hash functions
//
Big H1(char *string)
{ // Hash a zero-terminated string to a number < modulus
Big h,p;
char s[HASH_LEN];
int i,j;
sha sh;
shs_init(&sh);
for (i=0;;i++)
{
if (string[i]==0) break;
shs_process(&sh,string[i]);
}
shs_hash(&sh,s);
p=get_modulus();
h=1; j=0; i=1;
forever
{
h*=256;
if (j==HASH_LEN) {h+=i++; j=0;}
else h+=s[j++];
if (h>=p) break;
}
h%=p;
return h;
}
Big H2(ZZn2 x)
{ // Hash an Fp2 to a big number
sha sh;
Big a,u,v;
char s[HASH_LEN];
int m;
shs_init(&sh);
x.get(u,v);
a=u;
while (a>0)
{
m=a%256;
shs_process(&sh,m);
a/=256;
}
a=v;
while (a>0)
{
m=a%256;
shs_process(&sh,m);
a/=256;
}
shs_hash(&sh,s);
a=from_binary(HASH_LEN,s);
return a;
}
// Hash and map a Server Identity to a curve point E(Fp2)
ECn2 hash2(char *ID,Big cof2)
{
ECn2 T;
ZZn2 x;
Big x0,y0=0;
x0=H1(ID);
do
{
x.set(x0,y0);
x0+=1;
}
while (!is_on_curve(x));
T.set(x);
T*=cof2;
return T;
}
// Hash and map a Client Identity to a curve point E(Fp)
ECn hash_and_map(char *ID,Big cof)
{
ECn Q;
Big x0=H1(ID);
while (!is_on_curve(x0)) x0+=1;
Q.set(x0); // Make sure its on E(F_p)
Q*=cof;
return Q;
}
void set_frobenius_constant(ZZn2 &X)
{
Big p=get_modulus();
switch (get_mip()->pmod8)
{
case 5:
X.set((Big)0,(Big)1); // = (sqrt(-2)^(p-1)/2
break;
case 3: // = (1+sqrt(-1))^(p-1)/2
X.set((Big)1,(Big)1);
break;
case 7: // = (2+sqrt(-1))^(p-1)/2
X.set((Big)2,(Big)1);
break;
default: break;
}
X=pow(X,(p-1)/2);
}
int main()
{
ifstream common("nk4.ecs"); // elliptic curve parameters
miracl* mip=&precision;
ECn Alice,Bob,sA,sB;
ECn2 Server,sS;
ZZn2 res,sp,ap,bp,wa,wb,w1,w2,Fr;
ZZn ww;
ZZn4 w;
Big a,b,s,ss,p,q,r,B,cof,n,t1;
Big cf[2];
int i,bitz,A;
time_t seed;
cout << "Started" << endl;
common >> bitz;
mip->IOBASE=16;
common >> p;
common >> A;
common >> B;
common >> cof; // #E/q
common >> q; // low hamming weight q
common >> cf[0]; // [(p^2+1)/q]/p
common >> cf[1]; // [(p^2+1)/q]%p
cout << "Initialised... " << p%8 << endl;
Big t=p+1-cof*q;
Big cof2=(p*p+1)/q+(t*t-2*p)/q;
t1=p-cof*q; // t-1
time(&seed);
irand((long)seed);
ecurve(A,B,p,MR_AFFINE);
set_frobenius_constant(Fr);
mip->IOBASE=16;
mip->TWIST=TRUE; // map Server to point on twisted curve E(Fp2)
// hash Identities to curve point
ss=rand(q); // TA's super-secret
cout << "Mapping Server ID to point" << endl;
Server=hash2((char *)"Server",cof2);
cout << "Mapping Alice & Bob ID's to points" << endl;
Alice=hash_and_map((char *)"Alice",cof);
Bob= hash_and_map((char *)"Robert",cof);
cout << "Alice, Bob and the Server visit Trusted Authority" << endl;
sS=ss*Server;
sA=ss*Alice;
sB=ss*Bob;
cout << "Alice and Server Key Exchange" << endl;
a=rand(q); // Alice's random number
s=rand(q); // Server's random number
if (!power_pairing(Server,sA,t1,cf,Fr,a,q,res)) cout << "Trouble" << endl;
if (powl(res,q)!=(ZZn2)1)
{
cout << "Wrong group order - aborting" << endl;
exit(0);
}
ap=res;
if (!power_pairing(sS,Alice,t1,cf,Fr,s,q,res)) cout << "Trouble" << endl;
if (powl(res,q)!=(ZZn2)1)
{
cout << "Wrong group order - aborting" << endl;
exit(0);
}
sp=res;
cout << "Alice Key= " << H2(powl(sp,a)) << endl;
cout << "Server Key= " << H2(powl(ap,s)) << endl;
cout << "Bob and Server Key Exchange" << endl;
b=rand(q); // Bob's random number
s=rand(q); // Server's random number
if (!power_pairing(Server,sB,t1,cf,Fr,b,q,res)) cout << "Trouble" << endl;
if (powl(res,q)!=(ZZn2)1)
{
cout << "Wrong group order - aborting" << endl;
exit(0);
}
bp=res;
if (!power_pairing(sS,Bob,t1,cf,Fr,s,q,res)) cout << "Trouble" << endl;
if (powl(res,q)!=(ZZn2)1)
{
cout << "Wrong group order - aborting" << endl;
exit(0);
}
sp=res;
cout << "Bob's Key= " << H2(powl(sp,b)) << endl;
cout << "Server Key= " << H2(powl(bp,s)) << endl;
return 0;
}